PET Image Interpretation Training for [18F]Flutemetamol
The ETP (http://www.readvizamyl.com but preloaded on dedicated computers for the purpose of this study) familiarized nuclear medicine physicians, radiologists and technologists with the proper orientation and interpretation of [18F]flutemetamol PET images, as well as providing background information on brain anatomy and pathophysiology useful for image interpretation. The programme comprised four interactive modules including self-assessments covering the following: To complete the testing process, the trainee was required to independently read and classify images and was provided expert feedback on a series of images. To be deemed ready to interpret [18F]flutemetamol images, users had then to correctly assign at least 14/15 images in the test at the end of the training. The programme emphasized the importance and benefits of a colour (e.g. rainbow or Sokoloff) scale to facilitate identification of elevated levels of [18F]flutemetamol activity. By setting a known negative region, such as the cerebellar cortex, to 30%, and/or using pons activity to set near maximal intensity (90%), the colour gradient enabled differentiation between positive and negative regions of amyloid uptake in the cortex.
Partial Protocol Preview
This section provides a glimpse into the protocol. The remaining content is hidden due to licensing restrictions, but the full text is available at the following link:
Access Free Full Text.
Buckley C.J., Sherwin P.F., Smith A.P., Wolber J., Weick S.M, & Brooks D.J. (2016). Validation of an electronic image reader training programme for interpretation of [18F]flutemetamol β-amyloid PET brain images. Nuclear Medicine Communications, 38(3), 234-241.
The ETP (http://www.readvizamyl.com but preloaded on dedicated computers for the purpose of this study) familiarized nuclear medicine physicians, radiologists and technologists with the proper orientation and interpretation of [18F]flutemetamol PET images, as well as providing background information on brain anatomy and pathophysiology useful for image interpretation.
dependent variables
The trainee was required to independently read and classify images.
Users had then to correctly assign at least 14/15 images in the test at the end of the training.
control variables
The programme emphasized the importance and benefits of a colour (e.g. rainbow or Sokoloff) scale to facilitate identification of elevated levels of [18F]flutemetamol activity.
By setting a known negative region, such as the cerebellar cortex, to 30%, and/or using pons activity to set near maximal intensity (90%), the colour gradient enabled differentiation between positive and negative regions of amyloid uptake in the cortex.
Annotations
Based on most similar protocols
Etiam vel ipsum. Morbi facilisis vestibulum nisl. Praesent cursus laoreet felis. Integer adipiscing pretium orci. Nulla facilisi. Quisque posuere bibendum purus. Nulla quam mauris, cursus eget, convallis ac, molestie non, enim. Aliquam congue. Quisque sagittis nonummy sapien. Proin molestie sem vitae urna. Maecenas lorem.
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to
get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required