Fig. S1 shows further evidence that StableMARK labels the subset of stable MTs. Related to Figs. 1 and 2. Fig. S2 demonstrates that StableMARK prefers binding to expanded lattices in vitro. Related to Fig. 2. Fig. S3 data depicts live-cell imaging of the behavior of individual stable MTs. Related to Fig. 3. Fig. S4 shows further evidence that StableMARK at low levels has minimal effects on MTs and organelle transport. Related to Figs. 4 and 5. Fig. S5 gives further data on the dynamics of StableMARK-decorated MTs. Related to Fig. 6. Fig. S6 provides more data on stable MTs during cell division. Related to Fig. 8. Fig. S7 shows data that demonstrate the localization of StableMARK to stable MTs in different cell lines. Video 1 (related to Fig. 3) shows StableMARK and mCherry-tubulin in a U2OS cell. Video 2 (related to Fig. 3 A) shows StableMARK and mCherry-tubulin in a U2OS cell. Video 3 (related to Fig. 3 B) shows StableMARK and mCherry-tubulin in a U2OS cell. Video 4 (related to Fig. 3 C) shows StableMARK in U2OS cell. Video 5 (related to Fig. 3 E) shows StableMARK in U2OS cell. Video 6 (related to Fig. 5 C) shows cesicles labeled with mCherry-Rab6a moving over StableMARK-positive MT in a U2OS cell. Video 7 (related to Fig. 6 B) shows laser-induced severing of MTs in U2OS cell expressing StableMARK and mCherry-tubulin. Video 8 (related to Fig. 6 D) shows EB3-tdTomato comet growing from StableMARK-labeled MT in U2OS cell. Video 9 (related to Fig. 7 B) shows transient binding of StableMARK to MTs labeled with mCherry-tubulin in U2OS cell. Video 10 (related to Fig. 8 C) shows mitosis in stable U2OS Flp-In cell(s) expressing StableMARK.
Free full text: Click here