All the patients were treated with CyberKnife® G4 (Accuray, Sunnyvale, CA, USA). For respiratory management, patients were administered SABR using either the fiducial-less, direct tumor tracking system (XSight Lung Tracking System®, Accuray, Sunnyvale, CA, USA) or a tracking system involving skeletal structures (XSight Spine Tracking System®, Accuray, Sunnyvale, CA, USA) without implanting fiducials. Radiotherapy was performed as per our previous report [12 (link)]. Four-dimensional computed tomography (CT), with a slice thickness of 1 mm, was performed. Primary lesions were delineated as GTV in the lung window CT setting. On the CT images, the solid tumor components (GTV core) of the GTV (window level, –200 Hounsfield units; window width, 1 Hounsfield unit), were contoured (Fig. 1). The internal target volume (ITV) was calculated from the GTVs during each respiratory phase. Finally, PTV was set as the ITV, plus a 3–8-mm safety margin. The PTV margin depends on the tracking system used, and when we use XSight Spine Tracking System®, the distance from the vertebrae.
CT images of contoured GTV (A) and GTV core (the solid tumor components of the GTV) B. GTV was delineated in the lung window CT setting, while GTV core were contoured (window level [WL], –200 Hounsfield units; window width [WW], 1 Hounsfield unit). GTV, gross tumor volume
In cases with GTV cores, a dose prescription was defined as 99% of the GTV core. Overall, 93 peripheral lung tumors were prescribed a dose of 52 Gy in 4 fractions. Additionally, the centrally located lung tumors received 60 Gy (13 tumors) in 10 fractions, 70 Gy (1 tumor) in 10 fractions, 60 Gy (1 tumor) in 8 fractions, and 56 Gy (1 tumor) in 8 fractions. In cases where the tumor did not have a solid component and had a ground-glass shadow, the dose prescription was defined as 95% of the PTV, based on which 3 tumors were prescribed 42 Gy in 4 fractions. This translated to a biologically effective dose (BED) 10 of 86.1 Gy, which is approximately equivalent to the prescription dose of 48 Gy to the isocenter. These values were reported by the Japan Clinical Oncology Group (JCOG) 0403 trial for primary lung cancer [13 (link)]. We used the Monte Carlo (Multiplan®, Accuray, Sunnyvale, CA, USA) dose calculation algorithm to determine the final doses.
Hayashi K., Suzuki O., Shiomi H., Ono H., Setoguchi A., Nakai M., Nakanishi E., Tatekawa S., Ose N., Hirata T., Tamari K., Seo Y., Funaki S., Isohashi F., Shimizu S., Shintani Y, & Ogawa K. (2023). Stereotactic ablative body radiotherapy with a central high dose using CyberKnife for metastatic lung tumors. BMC Cancer, 23, 215.
Respiratory management technique (fiducial-less, direct tumor tracking system or tracking system involving skeletal structures)
dependent variables
Treatment outcomes (not explicitly specified)
control variables
Use of CyberKnife G4 for radiotherapy
Radiation dose and fractionation regimens
controls
No positive or negative controls were explicitly mentioned in the input.
Annotations
Based on most similar protocols
Etiam vel ipsum. Morbi facilisis vestibulum nisl. Praesent cursus laoreet felis. Integer adipiscing pretium orci. Nulla facilisi. Quisque posuere bibendum purus. Nulla quam mauris, cursus eget, convallis ac, molestie non, enim. Aliquam congue. Quisque sagittis nonummy sapien. Proin molestie sem vitae urna. Maecenas lorem.
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to
get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required