The electrophysiological “in vivo” data was recorded from the brain of anaesthetized adult mice of the C57/B16 strain with A32-tet probes (NeuroNexus Technologies, Inc) at 32 kSamples /s (Multi Channel Systems MCS GmbH) during a visual stimulation. The stimuli were presented monocularly on a Beetronics 12VG3 12-inch monitor with a resolution of 1440x900, at 60fps and consisted of full-field drifting gratings (0.11 cycles/deg; 1.75 cycles/s; variable contrast 25–100%; 8 directions in steps of 45°). The animals, on which the extracellular activity was recorded, were placed in the stereotaxic holder (Stoelting Co, Illinois, United States) and anaesthetized. Anesthesia was induced and maintained with isoflurane (ISO) in oxygen (5% for induction, 1–3% for maintenance). The heart rate, respiration rate, core body temperature, and pedal reflex were constantly monitored. A circular craniotomy (1x1 mm) was performed over the left visual cortex of the animal centred on 0–0.5 mm anterior to lambda, 2–2.5 mm lateral to midline. To obtain multiunit activity (MUA) containing signals, the extracellular data was digitally filtered using a band-pass filter with a range of 300Hz-7000Hz using a bidirectional Butterworth IIR filter of order 3. An amplitude threshold, most commonly chosen between 3 and 5 [1 (link)] standard deviations of the recorded signal, was used to detect spike, which were then fed into the feature extraction algorithms. Spikes were identified as threshold crossings and subsequently used as input for the feature extraction algorithm.
Multiple datasets were accumulated from each animal over a period of 4 to 6h in order to minimise animal use. All experiments were performed in accordance with the European Communities Council Directive of 22 September 2010 (2010/63/EU) and approved by the Local Ethics Committee (3/CE/02.11.2018) and the National Veterinary Authority (147/04.12.2018).
Free full text: Click here