In situ hybridisation (ISH) was carried out as previously described40 (link). Briefly, mice were perfused with 4% PFA in phosphate buffer using DEPC-treated water, and the brain tissue was dissected and post-fixed in the same buffer overnight. The tissue was frozen on the next day, and brain sections (20 μm) were prepared within a week. The sections were treated with 0.1 N HCl and Protease K, fixed, and acetylated. After pre-hybridisation in 50% formamide, 2x SSC, 1x Denhardt’s, 10 mM EDTA, 50 mg/ml tRNA, and 0.01% Tween20 at 55 °C for 1-2 h, the sections were hybridised with digoxigenin (DIG)-labelled RNA probes prepared using the DIG RNA labelling kit (Roche, #11175025910) in pre-hybridisation buffer supplemented with 5% dextran sulphate at 55 °C overnight. After RNaseH treatment to digest the unhybridised DIG-RNA, the brain sections were intensively washed with a low ionic buffer, and incubated with AP-conjugated anti-DIG antibody (Roche). The signal was visualised with NBT-BCIP. A fragment (1083–2036 nt) of the mouse Rfk gene (NM_019437) was cloned into pBluescript II and used as the template for probe synthesis.
In Situ Hybridization Technique for Mouse Brain
In situ hybridisation (ISH) was carried out as previously described40 (link). Briefly, mice were perfused with 4% PFA in phosphate buffer using DEPC-treated water, and the brain tissue was dissected and post-fixed in the same buffer overnight. The tissue was frozen on the next day, and brain sections (20 μm) were prepared within a week. The sections were treated with 0.1 N HCl and Protease K, fixed, and acetylated. After pre-hybridisation in 50% formamide, 2x SSC, 1x Denhardt’s, 10 mM EDTA, 50 mg/ml tRNA, and 0.01% Tween20 at 55 °C for 1-2 h, the sections were hybridised with digoxigenin (DIG)-labelled RNA probes prepared using the DIG RNA labelling kit (Roche, #11175025910) in pre-hybridisation buffer supplemented with 5% dextran sulphate at 55 °C overnight. After RNaseH treatment to digest the unhybridised DIG-RNA, the brain sections were intensively washed with a low ionic buffer, and incubated with AP-conjugated anti-DIG antibody (Roche). The signal was visualised with NBT-BCIP. A fragment (1083–2036 nt) of the mouse Rfk gene (NM_019437) was cloned into pBluescript II and used as the template for probe synthesis.
Corresponding Organization : Nagoya City University
Other organizations : RIKEN Center for Brain Science, Juntendo University
Variable analysis
- None explicitly mentioned
- Localization of the Rfk gene transcript
- Perfusion with 4% PFA in phosphate buffer using DEPC-treated water
- Brain tissue dissection and post-fixation in the same buffer overnight
- Brain tissue freezing and sectioning (20 μm) within a week
- Treatment of brain sections with 0.1 N HCl and Protease K, fixation, and acetylation
- Pre-hybridization in 50% formamide, 2x SSC, 1x Denhardt's, 10 mM EDTA, 50 mg/ml tRNA, and 0.01% Tween20 at 55 °C for 1-2 h
- Hybridization with digoxigenin (DIG)-labelled RNA probes in pre-hybridization buffer supplemented with 5% dextran sulphate at 55 °C overnight
- RNaseH treatment to digest the unhybridised DIG-RNA
- Intensive washing of brain sections with a low ionic buffer
- Incubation with AP-conjugated anti-DIG antibody (Roche)
- Signal visualization with NBT-BCIP
- None explicitly mentioned
- None explicitly mentioned
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!