The concatenation of the resulting 258 amino acid alignments was constructed with SCaFoS [43 (link)] by defining 63 deuterostomian operational taxonomic units (OTUs) representing all major lineages. The taxon sampling included 18 tunicates, 34 vertebrates, and one cephalochordate, with seven echinoderms, two hemichordates, and one xenoturbellid as more distant outgroups. When several sequences were available for a given OTU, the slowest evolving one was selected by SCaFoS, according to maximum likelihood distances computed by TREE-PUZZLE [44 (link)] under a WAG+F model. The percentage of missing data per taxon was reduced by creating some chimerical sequences from closely related species (i.e. Eptatretus burgeri/ Myxine glutinosa, Petromyzon marinus/Lethenteron japonicum, Callorhinchus milii/ C. callorynchus, Latimeria menadoensis/L. chalumnae, Rana chensinensis/ R. catesbeiana, Alligator sinensis/ A. mississippiensis, Chrysemys picta/ Emys orbicularis/ Trachemys scripta, Patiria miniata/ P. pectinifera/ Solaster stimpsonii, Apostichopus japonicus/ Parastichopus parvimensis, Ophionotus victoriae/ Amphiura filiformis) and by retaining only proteins with at most 15 missing OTUs. The tunicate Microcosmus squamiger was excluded at this stage due to a high percentage of missing data resulting from the low number of contigs obtained in the assembly. The final alignment comprised 258 proteins and 63 taxa for 66,593 unambiguously aligned amino acid sites with 20% missing amino acid data.
Deuterostome Phylogenomics: Orthologous Marker Selection
The concatenation of the resulting 258 amino acid alignments was constructed with SCaFoS [43 (link)] by defining 63 deuterostomian operational taxonomic units (OTUs) representing all major lineages. The taxon sampling included 18 tunicates, 34 vertebrates, and one cephalochordate, with seven echinoderms, two hemichordates, and one xenoturbellid as more distant outgroups. When several sequences were available for a given OTU, the slowest evolving one was selected by SCaFoS, according to maximum likelihood distances computed by TREE-PUZZLE [44 (link)] under a WAG+F model. The percentage of missing data per taxon was reduced by creating some chimerical sequences from closely related species (i.e. Eptatretus burgeri/ Myxine glutinosa, Petromyzon marinus/Lethenteron japonicum, Callorhinchus milii/ C. callorynchus, Latimeria menadoensis/L. chalumnae, Rana chensinensis/ R. catesbeiana, Alligator sinensis/ A. mississippiensis, Chrysemys picta/ Emys orbicularis/ Trachemys scripta, Patiria miniata/ P. pectinifera/ Solaster stimpsonii, Apostichopus japonicus/ Parastichopus parvimensis, Ophionotus victoriae/ Amphiura filiformis) and by retaining only proteins with at most 15 missing OTUs. The tunicate Microcosmus squamiger was excluded at this stage due to a high percentage of missing data resulting from the low number of contigs obtained in the assembly. The final alignment comprised 258 proteins and 63 taxa for 66,593 unambiguously aligned amino acid sites with 20% missing amino acid data.
Corresponding Organization : Institut des Sciences de l'Evolution de Montpellier
Other organizations : Station d’Écologie Théorique et Expérimentale, Centre d'Estudis Avançats de Blanes, University of North Carolina Wilmington
Protocol cited in 5 other protocols
Variable analysis
- Selection of a curated set of 258 orthologous markers for deuterostomes
- Phylogenomic analysis of deuterostomes based on the selected 258 orthologous markers
- Verification of alignments by eye using the program ED from the MUST package
- Exclusion of ambiguously aligned regions using Gblocks with medium default parameters and subsequent manual refinements
- Dealing with potential environmental contaminations and cross-contaminations between samples by performing BLAST searches and visual examination of individual gene phylogenies
- Selection of the slowest evolving sequence per operational taxonomic unit (OTU) based on maximum likelihood distances computed by TREE-PUZZLE under a WAG+F model
- Creation of chimerical sequences from closely related species to reduce the percentage of missing data per taxon
- Retaining only proteins with at most 15 missing OTUs in the final alignment
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!