Plasmid pDESTSIRV30, pDESTSIRV33 expressing the SIRV proteins (CAG38830 and CAG38833), pDESTAVRA expressing MRSA vraR protein (CAG40961) and pDESTFaBH2 expressing Pseudomonas aeruginosa FaBH2 protein (AAG06721)[28 (link)] were constructed using a modified Gateway technology with an N-terminal TEV protease cleavable His tag [29 (link)]. All the plasmids were propagated in DH5α E. coli cells (Stratagene, La Jolla) and plasmids were prepared using Qiagen miniprep kits (Qiagen, Germany). Pfu DNA polymerase, DpnI restriction enzyme are provided with QuikChange™ kit purchased from Stratagene, additional Pfu DNA polymerase was purchased from Promega when required. All the primers were synthesized by Eurogentec and simply purified by SePOP desalting. The melting temperature was calculated as Tm = 81.5 + 16.6(log([K+]/(1+0.7 [K+])) + 0.41(% [G+C]) – 500/(probe length in base) – 1.0(%mismatch) [30 (link)]. The Tm pp and Tm no were calculated for each primer. All primers and their Tm no and Tm pp are detailed in Table 1. PCR cycling was carried out using a Px2 thermal cycler (Thermo Electro Cooperation).
For single-site mutation, deletion or insertion, the PCR reaction of 50 μl contained 2–10 ng of template, 1 μM primer pair, 200 μM dNTPs and 3 units of Pfu DNA polymerase. The PCR cycles were initiated at 95°C for 5 minutes to denature the template DNA, followed by 12 amplification cycles. Each amplification cycle consisted of 95°C for 1 minute, Tm no -5°C for 1 minute and 72°C for 10 minutes or 15 minutes according to the length of the template constructs (about 500 bp per minute for Pfu DNA polymerase). The PCR cycles were finished with an annealing step at Tm pp-5 for 1 minute and an extension step at 72°C for 30 minutes. The PCR products were treated with 5 units of DpnI at 37°C for 2 hours and then 10 μl of each PCR reactions was analyzed by agarose gel electrophoresis. The full-length plasmid DNA was quantified by band density analysis against the 1636-bp band (equal to 10% of the mass applied to the gel) of the DNA ladders. An aliquot of 2 μl above PCR products, the PCR products generated using QuickChange™ or generated as described in [13 (link)] was transformed respectively into E. coli DH5α competent cells by heat shock. The transformed cells were spread on a Luria-Bertani (LB) plate containing antibiotics and incubated at 37°C over night. The number of colonies was counted and used as an indirect indication of PCR amplification efficiency. Four colonies from each plate were grown and the plasmid DNA was isolated. To verify the mutations, 500 ng of plasmid DNA was mixed with 50 pmole of T7 sequencing primer in a volume of 15 μl. DNA sequencing was carried out using the Sequencing Service, University of Dundee. For multiple site-directed mutations, deletions and insertions, the PCR was carried out in 50 μl of reaction containing 10 ng of template, 1 μM of each of the two primer pairs, 200 μM dNTPs and 3 units of Pfu DNA polymerase. The PCR cycles, DNA quantification, transformation and mutation verification were essentially the same as described above.
Free full text: Click here