Four F1 strains of G610C OI mice were used to determine the effect of genetic background on phenotype in 2-month-old male mice. Incipient congenic G610C OI B6 (∼98% B6 genetic background) male breeders were generated by six generations of backcrosses to Jackson Laboratory B6 mice (Stock Number 000664). Experimental heterozygous B6 male breeders were crossed with A/J (Stock Number 000646), BALB/cByJ (Stock Number 001026), C3H/HeJ (Stock Number 000659), and FVB/NJ (Stock Number 001806) females purchased from the Jackson Laboratory. Progeny of these crosses are designated, respectively, as A.B6, Cby.B6, C3.B6, and FVB.B6. Experimental mice were housed at UMB in a single specific-pathogen-free room and were exposed to identical environmental conditions consisting of a 12 hour light/dark cycle, an ambient temperature of 23°C, and ad libitum access to water and laboratory mouse chow. Genotype was assigned using a PCR assay that can discriminate the three possible G610C OI mouse genotypes. The forward primer (TCC CTG CTT GCC CTA GTC CCA AAG ATC CTT) and the reverse primer (AAG GTA TAG ATC AGA CAG CTG GCA CAT CCA) will generate a 165 bp (wild type) or a 337 and a 165 bp (heterozygous) or a 337 bp (homozygous) PCR product using G610C OI mice gDNA. All animals were euthanized by CO2 asphyxiation.
Generation and Characterization of G610C OI Mice
Four F1 strains of G610C OI mice were used to determine the effect of genetic background on phenotype in 2-month-old male mice. Incipient congenic G610C OI B6 (∼98% B6 genetic background) male breeders were generated by six generations of backcrosses to Jackson Laboratory B6 mice (Stock Number 000664). Experimental heterozygous B6 male breeders were crossed with A/J (Stock Number 000646), BALB/cByJ (Stock Number 001026), C3H/HeJ (Stock Number 000659), and FVB/NJ (Stock Number 001806) females purchased from the Jackson Laboratory. Progeny of these crosses are designated, respectively, as A.B6, Cby.B6, C3.B6, and FVB.B6. Experimental mice were housed at UMB in a single specific-pathogen-free room and were exposed to identical environmental conditions consisting of a 12 hour light/dark cycle, an ambient temperature of 23°C, and ad libitum access to water and laboratory mouse chow. Genotype was assigned using a PCR assay that can discriminate the three possible G610C OI mouse genotypes. The forward primer (TCC CTG CTT GCC CTA GTC CCA AAG ATC CTT) and the reverse primer (AAG GTA TAG ATC AGA CAG CTG GCA CAT CCA) will generate a 165 bp (wild type) or a 337 and a 165 bp (heterozygous) or a 337 bp (homozygous) PCR product using G610C OI mice gDNA. All animals were euthanized by CO2 asphyxiation.
Corresponding Organization : University of Maryland, Baltimore
Other organizations : Orthopaedic Research Laboratories, University of Michigan–Ann Arbor, Baltimore VA Medical Center, Geriatric Research Education and Clinical Center, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rutgers, The State University of New Jersey, University of Missouri
Protocol cited in 10 other protocols
Variable analysis
- Genetic background
- Phenotype
- Housing conditions (single specific-pathogen-free room, 12-hour light/dark cycle, ambient temperature of 23°C, ad libitum access to water and mouse chow)
- Age (2-month-old male mice)
- Positive control: Incipient congenic G610C OI B6 (∼98% B6 genetic background) male breeders generated by six generations of backcrosses to Jackson Laboratory B6 mice
- Negative control: Not explicitly mentioned
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!