Quantitative RT-PCR was carried out using a Rotor-Gene 2000 centrifugal real-time cycler (Corbett Research) using the Platinum SYBR Green qPCR SuperMix-UDG (Invitrogen). Each reaction contained: 12.5 μl of the Platinum SYBR Green qPCR SuperMix-UDG, 200 nM, 300 nM or 400 nM of forward and reverse primers and 5 μl cDNA (1:40 RNA dilution), to a final volume of 25 μl. Amplification was performed in 0.1 ml real-time PCR tubes (Corbett Research) placed in the 72-well rotor of the Rotor-Gene instrument. The cycling conditions were as follows: 50°C for 2 min, initial denaturation at 95°C for 2 min, followed by 45 cycles of 15 s at 95°C, 30 s at 60°C, and 30 s at 72°C (gain set at 8 for SYBR Green). Following the final cycle, melting curve analysis was performed to examine the specificity in each reaction tube (absence of primer dimers and other nonspecific products). The Rotor-Gene software allows automatic melting curve analysis for all tested samples in a given run. SYBR Green fluorescence of the generated products was continuously monitored throughout the temperature ramp from 60 to 99°C. The temperature rose in 1° increments with a 5 s hold at each degree. A single melt peak for each reaction confirmed the identity of each PCR product. Each assay included a no-template control for every primer pair. In addition, aliquots of each reaction mixture were analyzed by agarose gel electrophoresis to evaluate amplification of nonspecific products.
Primer Design and qRT-PCR Analysis
Quantitative RT-PCR was carried out using a Rotor-Gene 2000 centrifugal real-time cycler (Corbett Research) using the Platinum SYBR Green qPCR SuperMix-UDG (Invitrogen). Each reaction contained: 12.5 μl of the Platinum SYBR Green qPCR SuperMix-UDG, 200 nM, 300 nM or 400 nM of forward and reverse primers and 5 μl cDNA (1:40 RNA dilution), to a final volume of 25 μl. Amplification was performed in 0.1 ml real-time PCR tubes (Corbett Research) placed in the 72-well rotor of the Rotor-Gene instrument. The cycling conditions were as follows: 50°C for 2 min, initial denaturation at 95°C for 2 min, followed by 45 cycles of 15 s at 95°C, 30 s at 60°C, and 30 s at 72°C (gain set at 8 for SYBR Green). Following the final cycle, melting curve analysis was performed to examine the specificity in each reaction tube (absence of primer dimers and other nonspecific products). The Rotor-Gene software allows automatic melting curve analysis for all tested samples in a given run. SYBR Green fluorescence of the generated products was continuously monitored throughout the temperature ramp from 60 to 99°C. The temperature rose in 1° increments with a 5 s hold at each degree. A single melt peak for each reaction confirmed the identity of each PCR product. Each assay included a no-template control for every primer pair. In addition, aliquots of each reaction mixture were analyzed by agarose gel electrophoresis to evaluate amplification of nonspecific products.
Corresponding Organization :
Other organizations : Ghent University, Ghent University Hospital
Protocol cited in 90 other protocols
Variable analysis
- Primer concentration (200 nM, 300 nM, or 400 nM)
- Gene expression (measured by quantitative RT-PCR)
- Sodium concentration (50 mM Na+)
- Magnesium concentration (3 mM Mg2+)
- Temperature (60°C)
- Primer annealing temperature (60°C)
- CDNA input (5 μl of 1:40 RNA dilution)
- Reaction volume (25 μl)
- Reagents (Platinum SYBR Green qPCR SuperMix-UDG, Invitrogen)
- Positive control: None specified
- Negative control: No-template control for every primer pair
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!