In order to confirm the sucrose trend from GC-TOF-MS, soluble carbohydrates were also determined as described previously (Ribeiro et al. 2014 (link)). The supernatant after starch extraction was injected into a Dionex HPLC system (ICS 5000 + DC) to analyse the soluble carbohydrate content, using a CarboPac PA 1, 4- × 250-mm column preceded by a guard column (CarboPac PA 1, 4 × 50 mm), and a gradient pump module (ICS 5000 Dual Pump, Dionex). Mono-, di-, and tri-saccharides were separated by elution in an increasing concentration of NaOH (20–350 mM) with a flow rate of 1 mL min−1. Peaks were identified by co-elution of soluble carbohydrate standards. Sugar quantity was corrected by mean of the internal standard (melezitose) and transformed to micrograms of sugar per milligram of dry material.
Quantitative Metabolite Profiling by GC-TOF-MS
In order to confirm the sucrose trend from GC-TOF-MS, soluble carbohydrates were also determined as described previously (Ribeiro et al. 2014 (link)). The supernatant after starch extraction was injected into a Dionex HPLC system (ICS 5000 + DC) to analyse the soluble carbohydrate content, using a CarboPac PA 1, 4- × 250-mm column preceded by a guard column (CarboPac PA 1, 4 × 50 mm), and a gradient pump module (ICS 5000 Dual Pump, Dionex). Mono-, di-, and tri-saccharides were separated by elution in an increasing concentration of NaOH (20–350 mM) with a flow rate of 1 mL min−1. Peaks were identified by co-elution of soluble carbohydrate standards. Sugar quantity was corrected by mean of the internal standard (melezitose) and transformed to micrograms of sugar per milligram of dry material.
Variable analysis
- Mass of dry material used for extraction (5 mg instead of 20 mg)
- Polar metabolite profiles from GC-TOF-MS analysis
- Soluble carbohydrate content determined by HPLC
- All volumes were stoichiometrically adjusted to account for the reduced dry material used
- Soluble carbohydrate standards used for peak identification
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!