In total, 7 cases were investigated, considering changes in catheter setup and flow rates. As a baseline case, the 1 inflow and 1 outflow catheter setup was used at a flow rate of 1000 mL/min. We repeated this experiment 3 times to demonstrate the reproducibility of the experiments. Using the same catheter setup, 3 different flow rates were considered: 600 mL/min, 800 mL/min and 1000 mL/min. For the base flow rate of 1000 mL/min, 3 catheter setups were considered: 1 inflow/1 outflow, 2 inflow/1 outflow and 3 inflow/1 outflow. The outflow catheter was placed at a maximum distance from the inflow catheter(s), which can be considered optimal since this positioning allows the heat to distribute before extracting it. Only additional inflow catheters were considered because additional outflow catheters would not have impacted the thermal distribution as significantly as additional inflow catheters. The 1 inflow/1 outflow setup with a flow rate of 1000 mL/min setup was also used for with inflow temperatures of 37.7°C and 47.7°C.
Phantom Cooling and Catheter Setup Effects
In total, 7 cases were investigated, considering changes in catheter setup and flow rates. As a baseline case, the 1 inflow and 1 outflow catheter setup was used at a flow rate of 1000 mL/min. We repeated this experiment 3 times to demonstrate the reproducibility of the experiments. Using the same catheter setup, 3 different flow rates were considered: 600 mL/min, 800 mL/min and 1000 mL/min. For the base flow rate of 1000 mL/min, 3 catheter setups were considered: 1 inflow/1 outflow, 2 inflow/1 outflow and 3 inflow/1 outflow. The outflow catheter was placed at a maximum distance from the inflow catheter(s), which can be considered optimal since this positioning allows the heat to distribute before extracting it. Only additional inflow catheters were considered because additional outflow catheters would not have impacted the thermal distribution as significantly as additional inflow catheters. The 1 inflow/1 outflow setup with a flow rate of 1000 mL/min setup was also used for with inflow temperatures of 37.7°C and 47.7°C.
Corresponding Organization : University of Amsterdam
Other organizations : Vrije Universiteit Amsterdam
Variable analysis
- Catheter setup (1 inflow/1 outflow, 2 inflow/1 outflow, 3 inflow/1 outflow)
- Flow rate (600 mL/min, 800 mL/min, 1000 mL/min)
- Inflow temperature (37.7°C, 42.7°C, 47.7°C)
- Temperature measurements in the phantom at 5-second intervals for 30 minutes
- Allowing the experimental setup to cool down to room temperature before each experiment to ensure uniform initial conditions
- Removing air bubbles from the system by pre-circulating for 10 minutes before experiments
- Setting the water baths to 43.5°C, resulting in an inflow temperature of about 42.7°C
- Placing the catheter tips at a fixed depth of 3 centimeters from the fluid surface
- The 1 inflow/1 outflow setup with a flow rate of 1000 mL/min was used as a baseline case and repeated 3 times to demonstrate reproducibility
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!