The raw data for Hurricane Sandy comprise two distinct sets of messages. We obtained the data sets through the analytics company Topsy Labs. The first set consists of messages with the hashtag “#sandy” posted between 15 October and 12 November 2012. The data include the text of the messages and a range of additional information, such as message identifiers, user identifiers, follower counts, retweet statuses, self-reported or automatically detected location, time stamps, and sentiment scores. The second data set has a similar structure and was collected within the same time frame; however, instead of a hashtag, it includes all messages that contain one or more instances of specific keywords that are considered to be relevant to the event and its consequences (“sandy,” “hurricane,” “storm,” “superstorm,” “flooding,” “blackout,” “gas,” “power,” “weather,” “climate,” etc.; see table S1 for the full list). In total, for Hurricane Sandy, we have 52.55 million messages from 13.75 million unique users. Data for the additional disasters were obtained in two ways. For the disasters that occurred during 2013, the data were purchased from Gnip, a Twitter subsidiary data reseller. For each disaster, we used the geographic boundary of the affected region and collected all messages that contained a preselected set of keywords (“storm,” “rain,” “flood,” “wind,” “tornado,” “mudslide,” “landslide,” “quake,” “fema”). Data for the events from 2014 are extracted from continuously collected geo-tagged tweets from the United States via Twitter’s Streaming Application Programing Interface (API). Data sets obtained from data providers (Topsy and Gnip) are the subsets of full historical data (“high fidelity”). Streaming API offers almost complete coverage because only about 1 to 1.5% of all messages are geo-enabled and more than 90% of natively geo-coded messages are captured when geographic boundary is used in a request (69 ).
Partial Protocol Preview
This section provides a glimpse into the protocol. The remaining content is hidden due to licensing restrictions, but the full text is available at the following link:
Access Free Full Text.
Kryvasheyeu Y., Chen H., Obradovich N., Moro E., Van Hentenryck P., Fowler J, & Cebrian M. (2016). Rapid assessment of disaster damage using social media activity. Science Advances, 2(3), e1500779.
Corresponding Organization : University of California, San Diego
Other organizations :
Monash University, Scripps Institution of Oceanography, Universidad Carlos III de Madrid, Australian National University, University of Michigan–Ann Arbor, University of California San Diego Medical Center
Etiam vel ipsum. Morbi facilisis vestibulum nisl. Praesent cursus laoreet felis. Integer adipiscing pretium orci. Nulla facilisi. Quisque posuere bibendum purus. Nulla quam mauris, cursus eget, convallis ac, molestie non, enim. Aliquam congue. Quisque sagittis nonummy sapien. Proin molestie sem vitae urna. Maecenas lorem.
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to
get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required