The 160 human coronavirus sequences comprised exactly 100 different types. We added to the data the bat coronavirus as an outgroup to determine the root within the phylogeny. Phylogenetic network analyses were performed with the Network 5011CS package, which includes, among other algorithms, the median joining network algorithm (3 (link)) and a Steiner tree algorithm to identify most-parsimonious trees within complex networks (9 ). We coded gaps of adjacent nucleotides as single deletion events (these deletions being rare, up to 24 nucleotides long, and mostly in the amino acid reading frame) and ran the data with the epsilon parameter set to zero, and performed an exploratory run by setting the epsilon parameter to 10. Both settings yielded a low-complexity network. The Steiner tree algorithm was then run on both networks and provided the identical result that the most-parsimonious trees within the network were of length 229 mutations. The structures of both networks were very similar, with the epsilon 10 setting providing an additional rectangle between the A and B clusters. The network output was annotated using the Network Publisher option to indicate geographic regions, sample collection times, and cluster nomenclature.
GISAID Database for SARS-CoV-2 Genomic Analysis
The 160 human coronavirus sequences comprised exactly 100 different types. We added to the data the bat coronavirus as an outgroup to determine the root within the phylogeny. Phylogenetic network analyses were performed with the Network 5011CS package, which includes, among other algorithms, the median joining network algorithm (3 (link)) and a Steiner tree algorithm to identify most-parsimonious trees within complex networks (9 ). We coded gaps of adjacent nucleotides as single deletion events (these deletions being rare, up to 24 nucleotides long, and mostly in the amino acid reading frame) and ran the data with the epsilon parameter set to zero, and performed an exploratory run by setting the epsilon parameter to 10. Both settings yielded a low-complexity network. The Steiner tree algorithm was then run on both networks and provided the identical result that the most-parsimonious trees within the network were of length 229 mutations. The structures of both networks were very similar, with the epsilon 10 setting providing an additional rectangle between the A and B clusters. The network output was annotated using the Network Publisher option to indicate geographic regions, sample collection times, and cluster nomenclature.
Corresponding Organization :
Other organizations : Fluxus Technology (United Kingdom), University of Cambridge, Kiel University
Protocol cited in 8 other protocols
Variable analysis
- None explicitly mentioned
- Phylogenetic network analysis of coronavirus genomes
- Sequence similarity between genomes
- Truncation of sequence flanks to the consensus range 56 to 29,797 nucleotides
- Alignment of sequences to the full reference genome by Wu et al. (2020)
- Inclusion of bat coronavirus sequence as an outgroup to determine the root within the phylogeny
- Positive control: Bat coronavirus sequence (BatCoVRaTG13) was used as an outgroup to determine the root of the phylogenetic network
- No negative controls were explicitly mentioned
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!