MSN were identified as in20 (link). They were recorded in the current clamp configuration with the bridge mode enabled (EPC-10 amplifier, Patch- and Fitmaster software; HEKA, Lambrecht, Germany). The internal solution contained (in mM): 150 K-gluconate, 10 NaCl, 3 Mg-ATP, 0.5 GTP, 10 HEPES and 0.05 EGTA adjusted to pH = 7.3 and 310 mOsm with the liquid junction potential (15 mV) corrected online. Slices were perfused (2–3 ml/min, aCSF, 21–24 °C) in presence of the GABAAR antagonist gabazine (SR-95531, 10 µM, Sigma). All solutions were continuously oxygenated with 95% O2, 5% CO2 gas.
Glutamatergic excitatory afferents where stimulated intrastriatally with aCSF-filled theta-glass electrodes typically ~ 100–150 µm away from the MSN soma (position of stimulation electrode between MSN and corpus callosum). A bipolar voltage pulse (0.1 ms, ± 5 to ± 30 V) at 0.2 Hz induced subthreshold excitatory postsynaptic potentials (EPSPs; 4–10 mV). Following 10–15 min baseline recording synaptic plasticity was induced by a high frequency protocol (four 100 Hz tetani, 3 s long, separated by 30 s; holding potential − 70 mV). Recordings were rejected if the membrane potential was more positive than − 80 mV or the input resistance changed by more than 30%. We verified that no background long-term potentiation was present as APV ((2R)-amino-5-phosphonovaleric acid), a specific blocker of a subtype of glutamate receptors, did not alter the effect in wildtype mice9 (link).