FRAP was performed to assess the dynamics of focal adhesions containing WT talin1 or 17b splice variant. Live-cell imaging was performed at 63X on Leica SP8 live-imaging system. Before photobleaching, three pre-bleach images of GFP-talin were acquired, using a 488 nm laser set at 10% of the maximum power. Photobleaching of GFP was conducted for 10 s at 100% laser power. Fluorescence recovery images were acquired every 30 s for 9 min using a 488 nm laser set at 10% of the maximum power. The mean fluorescence intensity pre-bleach was set to 100%. Photobleaching due to continuous illumination during recording was corrected by normalizing the fluorescence intensity at the FA with total cell fluorescence intensity. Corrected recovery fluorescence intensities were normalized to the pre-bleach intensity. The intensity was considered 100 and 0% for pre-bleach and bleach points. The fractional recovery post-bleach was calculated by normalizing the corrected recovery fluorescence intensities at each time point to pre-bleach intensity.
Talin Dynamics in Focal Adhesions
FRAP was performed to assess the dynamics of focal adhesions containing WT talin1 or 17b splice variant. Live-cell imaging was performed at 63X on Leica SP8 live-imaging system. Before photobleaching, three pre-bleach images of GFP-talin were acquired, using a 488 nm laser set at 10% of the maximum power. Photobleaching of GFP was conducted for 10 s at 100% laser power. Fluorescence recovery images were acquired every 30 s for 9 min using a 488 nm laser set at 10% of the maximum power. The mean fluorescence intensity pre-bleach was set to 100%. Photobleaching due to continuous illumination during recording was corrected by normalizing the fluorescence intensity at the FA with total cell fluorescence intensity. Corrected recovery fluorescence intensities were normalized to the pre-bleach intensity. The intensity was considered 100 and 0% for pre-bleach and bleach points. The fractional recovery post-bleach was calculated by normalizing the corrected recovery fluorescence intensities at each time point to pre-bleach intensity.
Corresponding Organization :
Other organizations : BioMed X Institute, University of Kent, National University of Singapore, University Medical Center Utrecht, Yale University, Novartis (Switzerland)
Variable analysis
- Expression of full-length WT talin1 and full-length talin1-17b variant
- Cell movement velocity
- Dynamics of focal adhesions containing WT talin1 or 17b splice variant (measured by FRAP)
- Cell seeding on glass-bottom dishes for 8 h
- Hoechst (1 µg/ml) staining for 1 h before imaging
- Live-cell imaging at 20X and 63X on Leica SP8 live-imaging system
- Image acquisition every 5 min for 4 h
- FRAP: 3 pre-bleach images of GFP-talin acquired using a 488 nm laser at 10% power, photobleaching of GFP for 10 s at 100% laser power, fluorescence recovery images acquired every 30 s for 9 min using a 488 nm laser at 10% power
- Positive control: Not specified
- Negative control: Not specified
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!