Substrate conversions were done in duplicates, using 1.0–5.0 mM substrate (1% methanol), 0.10 mM NADPH, 2.0 µM enzyme, 5.0 µM phosphite dehydrogenase (PTDH, produced in-house58 ), and 20 mM sodium phosphite. The last two components were used as a regeneration system for NADPH and the control did not contain any tAncFMO. All compounds were prepared in storage buffer (50 mM KPi, 250 mM NaCl, 0.05% TritonTm X-100 reduced, pH 7.5) the final reaction volume was adjusted to 1.0 ml and put into 4 ml vials before being incubated at 30 °C, with shaking, for 16 h. Conversions of phenylacetone, heptan-2-one, cyclohexanone, benzyl phenyl sulfide and methyl-p-tolyl sulfide were analyzed by GC–MS while benzydamine and tamoxifen conversions were monitored by HPLC. Due to their poor solubility, tamoxifen, benzydamine, and benzyl phenyl sulfide conversions were done using 1.0 mM substrate while the remaining substrates were tested at 5.0 mM.
Evaluation of tAncFMO Substrate Oxidation
Substrate conversions were done in duplicates, using 1.0–5.0 mM substrate (1% methanol), 0.10 mM NADPH, 2.0 µM enzyme, 5.0 µM phosphite dehydrogenase (PTDH, produced in-house58 ), and 20 mM sodium phosphite. The last two components were used as a regeneration system for NADPH and the control did not contain any tAncFMO. All compounds were prepared in storage buffer (50 mM KPi, 250 mM NaCl, 0.05% TritonTm X-100 reduced, pH 7.5) the final reaction volume was adjusted to 1.0 ml and put into 4 ml vials before being incubated at 30 °C, with shaking, for 16 h. Conversions of phenylacetone, heptan-2-one, cyclohexanone, benzyl phenyl sulfide and methyl-p-tolyl sulfide were analyzed by GC–MS while benzydamine and tamoxifen conversions were monitored by HPLC. Due to their poor solubility, tamoxifen, benzydamine, and benzyl phenyl sulfide conversions were done using 1.0 mM substrate while the remaining substrates were tested at 5.0 mM.
Corresponding Organization : Consejo Nacional de Investigaciones Científicas y Técnicas
Other organizations : University of Groningen, University of Pavia
Variable analysis
- Substrate concentration (1.0–5.0 mM)
- Substrate type (methyl-p-tolyl sulfide, benzyl phenyl sulfide, benzydamine, tamoxifen, heptan-2-one, cyclohexanone, phenylacetone)
- Substrate conversion
- Activity of tAncFMO enzyme
- NADPH concentration (0.10 mM)
- TAncFMO enzyme concentration (2.0 μM)
- Phosphite dehydrogenase (PTDH) concentration (5.0 μM)
- Sodium phosphite concentration (20 mM)
- Reaction buffer composition (50 mM KPi, 250 mM NaCl, 0.05% Triton™ X-100 reduced, pH 7.5)
- Reaction temperature (30 °C)
- Reaction time (16 h)
- Positive control: Reaction containing all components except tAncFMO enzyme
- Negative control: Reaction containing all components
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!