E. coli total lipid extract was purchased from Avanti Polar Lipids (Alabaster, AL, USA) and analyzed on the LTQ Orbitrap XL instrument in negative ion mode. A solution of the total lipid concentration of 2.5 μg/ml in 7.5 mM ammonium acetate in choloroform/methanol/2-propanol (1/2/4, v/v/v) was infused into the mass spectrometer by TriVersa robotic ion source using a chip with the diameter of spraying nozzles of 4.1 μm. To produce the spectra dataset, the extract was analyzed in several independent experiments: experiment I, eight acquisitions under the unit mass resolution (R) settings using ion trap (IT) to acquire both MS and MS/MS spectra; experiment II, six acquisitions with R = 7,500 for MS spectra (Orbitrap) and unit resolution for MS/MS spectra (IT); experiment III, four acquisitions with R = 30,000 for MS spectra (Orbitrap) and unit resolution for MS/MS spectra (IT); experiment IV, four acquisitions with R = 100,000 for MS spectra (Orbitrap) and unit resolution for MS/MS spectra (IT); experiment V, seven acquisitions with R = 100,000 for MS spectra (Orbitrap) and R = 15,000 for MS/MS spectra (Orbitrap). In the experiments I to IV, each acquisition produced approximately 33 MS and 330 MS/MS spectra; in the experiment V, 10 MS and 100 MS/MS spectra were acquired. To reduce undersampling, in the experiment V, acquisition of MS/MS spectra was navigated by the inclusion list compiled from 40 masses of plausible PE, PG and PA precursors A list of molecular lipid species was produced by manual interpretation of spectra acquired in the experiment V with requested mass tolerance of better than 3 ppm for precursors and 5 ppm for specific fragment ions. Only lipid species identified in at least four out of seven replicated analyses were included. Spectra acquired in each of the experiments I to IV were further processed by LipidXplorer to produce corresponding MasterScan files. We used the dataset from the experiment I for comparative benchmarking of LipidXplorer against LipidQA and LipidSearch programs. Since LipidQA and LipidSearch do not align the spectra from replicated analyses, each acquisition was processed independently and then a non-redundant list of all identified lipid species was compiled.
Herzog R., Schwudke D., Schuhmann K., Sampaio J.L., Bornstein S.R., Schroeder M, & Shevchenko A. (2011). A novel informatics concept for high-throughput shotgun lipidomics based on the molecular fragmentation query language. Genome Biology, 12(1), R8.
Inclusion list of plausible PE, PG, and PA precursor masses
control variables
Total lipid concentration (2.5 μg/ml)
Solvent composition (7.5 mM ammonium acetate in choloroform/methanol/2-propanol, 1/2/4, v/v/v)
Spraying nozzle diameter (4.1 μm)
Ionization mode (negative ion mode)
controls
No positive or negative controls were explicitly mentioned in the input protocol.
Annotations
Based on most similar protocols
Etiam vel ipsum. Morbi facilisis vestibulum nisl. Praesent cursus laoreet felis. Integer adipiscing pretium orci. Nulla facilisi. Quisque posuere bibendum purus. Nulla quam mauris, cursus eget, convallis ac, molestie non, enim. Aliquam congue. Quisque sagittis nonummy sapien. Proin molestie sem vitae urna. Maecenas lorem.
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to
get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required