For endometrial specimen, the mRNA expression of four putative reference genes, glyceraldehyde 3-phosphate dehydrogenase (GAPDHP), 18S rRNA (18S), beta-2-microglobulin (B2M), and beta actin (ACTB) and one non-reference gene, solute carrier family 36 member 2 (SLC36A2) were measured by real-time RT-PCR. For testicular samples, the mRNA expression of GAPDH, 18S, B2M, ACTB, Succinate dehydrogenase complex (SDHA), and beta glucoronidase (GUSB) as putative internal control genes and aromatase (Cyp19a1) as non-reference transcript were determined. For conceptus tissue, the expression of GAPDH, 18S, B2M, ACTB, SDHA, and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein (YWHAZ) as reference gene candidates and Cyp19a1as non-reference genes was assessed using quantitative PCR. Primers specific for the selected transcripts were designed using Jellyfish 3.3.1 (Field Scientific LLC, Lewisburg, PA) and are listed in Table
Quantitative PCR Analysis of Endometrial, Testicular, and Conceptus Transcripts
For endometrial specimen, the mRNA expression of four putative reference genes, glyceraldehyde 3-phosphate dehydrogenase (GAPDHP), 18S rRNA (18S), beta-2-microglobulin (B2M), and beta actin (ACTB) and one non-reference gene, solute carrier family 36 member 2 (SLC36A2) were measured by real-time RT-PCR. For testicular samples, the mRNA expression of GAPDH, 18S, B2M, ACTB, Succinate dehydrogenase complex (SDHA), and beta glucoronidase (GUSB) as putative internal control genes and aromatase (Cyp19a1) as non-reference transcript were determined. For conceptus tissue, the expression of GAPDH, 18S, B2M, ACTB, SDHA, and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein (YWHAZ) as reference gene candidates and Cyp19a1as non-reference genes was assessed using quantitative PCR. Primers specific for the selected transcripts were designed using Jellyfish 3.3.1 (Field Scientific LLC, Lewisburg, PA) and are listed in Table
Corresponding Organization :
Other organizations : University of Kentucky, Western University of Health Sciences
Protocol cited in 8 other protocols
Variable analysis
- RNA sample amount (2 μg/reaction for endometrial and testicular specimens, and 200 ng/reaction for conceptus specimens)
- MRNA expression of putative reference genes (GAPDH, 18S, B2M, ACTB, SDHA, GUSB, YWHAZ)
- MRNA expression of non-reference genes (SLC36A2, Cyp19a1)
- RNase-free DNase I treatment
- Heat denaturation (75°C for 10 min)
- Reverse transcription using High Capacity cDNA Reverse Transcription Kit and random hexamers
- CDNA purification using QIAquick® PCR Purification Kit
- Spectrophotometric quantification of cDNA concentration
- Primer specificity confirmed by sequencing of PCR products
- Primer efficiency assessed using Linreg to ensure at least 1.9 PCR efficiency
- SYBR Green PCR Master Mix used for real-time PCR
- Cycling conditions: 95°C for 10 min; 40 cycles of 95°C for 15 sec, 59°C for 1 min; 55 to 95°C for dissociation
- PCR performed in triplicate
- Non-reverse transcribed RNA reactions included for each sample
- Dissociation analysis completed at the end of each real-time run to verify single product amplification
- Non-reverse transcribed RNA reactions for each sample
- Non-reverse transcribed RNA reactions for each sample
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!