Q-Chem contains an ever-growing suite of many-body methods for describing open-shell molecules and excited states.172 The EOM-CC224–226 (link) and ADC227,241 (link) formalisms are two powerful approaches for describing multiconfigurational wave functions within a black-box single-reference formalism. Target states |Ψex⟩ are described as excitations from a reference state |Ψ0⟩, where is an excitation operator parameterized via amplitudes that are determined by solving an eigenvalue problem. In EOM-CC, these amplitudes are eigenvectors of the effective Hamiltonian in which is either the CC or the MP2 operator for the reference state. Currently, EOM-CCSD and EOM-MP2 models are available. In ADC, an effective shifted Hamiltonian is constructed using perturbation theory and the intermediate state representation (ISR) formalism,227,241 (link) similar to Eq. (10), to afford where E0 is the energy of the MPn reference state. Diagonalization of the Hermitian matrix M yields excitation energies, and the ADC eigenvectors give access to the excited-state wave function. Second-order standard ADC(2), extended ADC(2)-x, and ADC(3) are available.241 For the second-order ADC schemes, spin-opposite-scaled (SOS) variants are also implemented.242 (link) Various EOM-CC and ADC models are defined by the choice of reference state |Ψ0⟩ and excitation operator , as illustrated in Fig. 10. The following models are available:224,227,241 (link) EE (excitation energies), IP (ionization potentials), EA (electron affinities), SF (spin–flip, for triplet and quartet references), 2SF (double SF, for quintet references); DIP (double IP), and DEA (double EA). At present, the 2SF, DIP, and DEA variants are only available in combination with an EOM treatment.243 (link) Analytic gradients244,245 (link) and properties246–248 (link) are available for most of these models, including transition properties between different target states (e.g., transition dipoles, angular momentum, and electronic circular dichroism rotatory strengths),249 (link) nonadiabatic couplings,250 (link) spin–orbit couplings,220,251,252 (link) and nonlinear optical properties, including two-photon transition moments and (hyper)polarizabilities for both ground and excited states.253–256 (link) Extensions of these theories to metastable states257 (link) (resonances) and to core-level excitations258–260 (link) are also available and are highlighted in Sec. V. The IP and EA variants of these models afford spin-pure descriptions of ground and excited doublet states and are useful for modeling charge-transfer processes. EOM-SF and SF-ADC methods are suitable for treating diradicals, triradicals, and conical intersections. The DEA and DIP ansätze further expand the scope of applicability.243 (link) Spin–flip methods can be used to treat strongly correlated systems within an effective Hamiltonian formalism,221,261,262 (link) with applications to single-molecule magnets and even infinite spin chains.222 (link) For visualization purposes, both Dyson orbitals264 (link) and natural transition orbitals265 (link) (NTOs) are available,15,88,220,266–269 (link) including NTOs of the response density matrices for analyzing two-photon absorption270 (link) and resonant inelastic x-ray scattering.271 (link) Figure 11 highlights the application of these tools to model magnetic properties and spin-forbidden chemistry. Exciton analyses,267,268,272–274 (link) bridging the gap between the quasiparticle and MO pictures of excited states, enable the calculation and visualization of electron–hole correlation.89,267,268,272,273 (link)
Epifanovsky E., Gilbert A.T., Feng X., Lee J., Mao Y., Mardirossian N., Pokhilko P., White A.F., Coons M.P., Dempwolff A.L., Gan Z., Hait D., Horn P.R., Jacobson L.D., Kaliman I., Kussmann J., Lange A.W., Lao K.U., Levine D.S., Liu J., McKenzie S.C., Morrison A.F., Nanda K.D., Plasser F., Rehn D.R., Vidal M.L., You Z.Q., Zhu Y., Alam B., Albrecht B.J., Aldossary A., Alguire E., Andersen J.H., Athavale V., Barton D., Begam K., Behn A., Bellonzi N., Bernard Y.A., Berquist E.J., Burton H.G., Carreras A., Carter-Fenk K., Chakraborty R., Chien A.D., Closser K.D., Cofer-Shabica V., Dasgupta S., de Wergifosse M., Deng J., Diedenhofen M., Do H., Ehlert S., Fang P.T., Fatehi S., Feng Q., Friedhoff T., Gayvert J., Ge Q., Gidofalvi G., Goldey M., Gomes J., González-Espinoza C.E., Gulania S., Gunina A.O., Hanson-Heine M.W., Harbach P.H., Hauser A., Herbst M.F., Hernández Vera M., Hodecker M., Holden Z.C., Houck S., Huang X., Hui K., Huynh B.C., Ivanov M., Jász Á., Ji H., Jiang H., Kaduk B., Kähler S., Khistyaev K., Kim J., Kis G., Klunzinger P., Koczor-Benda Z., Koh J.H., Kosenkov D., Koulias L., Kowalczyk T., Krauter C.M., Kue K., Kunitsa A., Kus T., Ladjánszki I., Landau A., Lawler K.V., Lefrancois D., Lehtola S., Li R.R., Li Y.P., Liang J., Liebenthal M., Lin H.H., Lin Y.S., Liu F., Liu K.Y., Loipersberger M., Luenser A., Manjanath A., Manohar P., Mansoor E., Manzer S.F., Mao S.P., Marenich A.V., Markovich T., Mason S., Maurer S.A., McLaughlin P.F., Menger M.F., Mewes J.M., Mewes S.A., Morgante P., Mullinax J.W., Oosterbaan K.J., Paran G., Paul A.C., Paul S.K., Pavošević F., Pei Z., Prager S., Proynov E.I., Rák Á., Ramos-Cordoba E., Rana B., Rask A.E., Rettig A., Richard R.M., Rob F., Rossomme E., Scheele T., Scheurer M., Schneider M., Sergueev N., Sharada S.M., Skomorowski W., Small D.W., Stein C.J., Su Y.C., Sundstrom E.J., Tao Z., Thirman J., Tornai G.J., Tsuchimochi T., Tubman N.M., Veccham S.P., Vydrov O., Wenzel J., Witte J., Yamada A., Yao K., Yeganeh S., Yost S.R., Zech A., Zhang I.Y., Zhang X., Zhang Y., Zuev D., Aspuru-Guzik A., Bell A.T., Besley N.A., Bravaya K.B., Brooks B.R., Casanova D., Chai J.D., Coriani S., Cramer C.J., Cserey G., DePrince AE I.I.I., DiStasio RA J.r., Dreuw A., Dunietz B.D., Furlani T.R., Goddard WA I.I.I., Hammes-Schiffer S., Head-Gordon T., Hehre W.J., Hsu C.P., Jagau T.C., Jung Y., Klamt A., Kong J., Lambrecht D.S., Liang W., Mayhall N.J., McCurdy C.W., Neaton J.B., Ochsenfeld C., Parkhill J.A., Peverati R., Rassolov V.A., Shao Y., Slipchenko L.V., Stauch T., Steele R.P., Subotnik J.E., Thom A.J., Tkatchenko A., Truhlar D.G., Van Voorhis T., Wesolowski T.A., Whaley K.B., Woodcock HL I.I.I., Zimmerman P.M., Faraji S., Gill P.M., Head-Gordon M., Herbert J.M, & Krylov A.I. (2021). Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. The Journal of Chemical Physics, 155(8), 084801.
Publication 2021
BodyCircular dichroism Conical Electron Intersections Matrix m OpticalOrbit Resonances Triplet X ray
Corresponding Organization : University of Southern California
Other organizations :
Q Chem (United States), Australian National University, University of Sydney, University of California, Berkeley, California Institute of Technology, The Ohio State University, Ludwig-Maximilians-Universität München, Hefei National Center for Physical Sciences at Nanoscale, University of Science and Technology of China, Loughborough University, Technical University of Denmark, Institute of Chemistry, Academia Sinica, University of Pittsburgh, University of Pennsylvania, University of Luxembourg, Kent State University, University of Cambridge, Donostia International Physics Center, Lawrence Berkeley National Laboratory, University of Michigan–Ann Arbor, University of Nottingham, National Taiwan University, University of Utah, The University of Texas Rio Grande Valley, University of Notre Dame, Boston University, Gonzaga University, University of Geneva, Graz University of Technology, Virginia Tech, Xiamen University, Korea Advanced Institute of Science and Technology, Massachusetts Institute of Technology, Digital Wave (United States), Purdue University West Lafayette, Florida State University, University of Helsinki, University of Minnesota, Harvard University, University of Groningen, Florida Institute of Technology, Yale University, University of Oklahoma, University of Bremen, Fudan University, National Center for Theoretical Sciences, Cornell University, University at Buffalo, State University of New York, University of California, Davis, University of South Carolina, University of South Florida
Coupled cluster (CC) and many-body perturbation theory (ADC) formalisms
Annotations
Based on most similar protocols
Etiam vel ipsum. Morbi facilisis vestibulum nisl. Praesent cursus laoreet felis. Integer adipiscing pretium orci. Nulla facilisi. Quisque posuere bibendum purus. Nulla quam mauris, cursus eget, convallis ac, molestie non, enim. Aliquam congue. Quisque sagittis nonummy sapien. Proin molestie sem vitae urna. Maecenas lorem.
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to
get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required