Example 17

Since interferon signaling is spontaneously activated in a subset of cancer cells and exposes potential therapeutic vulnerabilities, it was tested whether there is evidence for similar endogenous interferon activation in primary human tumors. An IFN-GES threshold was computed to predict ADAR dependency across the CCLE cell lines and was determined to be a z-score above 2.26 (FIG. 66, panel A). This threshold was applied to The Cancer Genome Atlas (TCGA) tumors, to identify primary cancers with similarly high interferon activation. Restricting the analysis to the 4,072 samples analyzed by TCGA with at least 70% tumor purity as estimated by the ABSOLUTE algorithm (Carter et al. (2012) Nat. Biotechnol. 30:413-421), 2.7% of TCGA tumors displayed IFN-GESs above this threshold (FIG. 66, panel B and. GSEA of amplified genes in these high purity, high interferon tumors revealed the top pathway as “Type I Interferon Receptor Binding”, comprising 17 genes that all encode type I interferons and are clustered on chromosome 9p21.3 (FIG. 67).

Furthermore, analysis of TCGA copy number data showed that the interferon gene cluster including IFN-β (IFNβI), IFN-ε (IFNE), IFN-ω (IFNWI), and all 13 subtypes of IFN-α on chromosome 9p21.3, proximal to the CDKN2A/CDKN2B tumor suppressor locus, is one of the most frequently homozygously deleted regions in the cancer genome. The interferon genes comprise 16 of the 26 most frequently deleted coding genes across 9,853 TCGA cancer specimens for which ABSOLUTE copy number data are available (FIG. 66, panels C and D). Interferon signaling and activation, both in tumors with high IFN-GESs or deletions in chromosome 9p, therefore represent a biomarker to stratify patients who benefit from interferon modulating therapies.

In summary, specific cancer cell lines have been identified with elevated IFN-β signaling triggered by an activated cytosolic DNA sensing pathway, conferring dependence on the RNA editing enzyme, ADAR1. In cells with low, basal interferon signaling, the cGAS-STING pathway is inactive and PKR levels are reduced (FIG. 68, panel A). Upon cGAS-STING activation, interferon signaling and PKR protein levels are elevated but ADAR1 is still able to suppress PKR activation (FIG. 68, panel B). However, once ADAR1 is deleted, the abundant PKR becomes activated and leads to downstream signaling and cell death (FIG. 68, panel C). This is also shown in normal cells lines (e.g. A549 and NCI-H1437) once exogenous interferon is introduced (FIG. 68, panel D). ADAR1 deficiency in cell lines with high interferon levels, whether from endogenous or exogenous sources, led to phosphorylation and activation of PKR, ATF4-mediated gene expression, and apoptosis. Recent studies have shown that cGAS activation and innate interferon signaling, induced by cytosolic DNA released from the nucleus by DNA damage and genome instability (Mackenzie et al. (2017) Nature 548:461-465; Harding et al. (2017) Nature 548:466-470), led to elevated interferon-related gene expression signatures, which have been linked to resistance to DNA damage, chemotherapy, and radiation in cancer cells (Weichselbaum et al. (2008) Proc. Natl. Acad. Sci. USA 105:18490-18495). In high-interferon tumors, blocking ADAR1 might be effective to induce PKR-mediated apoptotic pathways while upregulating type I interferon signaling, which could contribute to anti-tumor immune responses (Parker et al. (2016) Nature 16:131-144). Alternatively, in tumors without activated interferon signaling, ADAR1 inhibition can be combined with localized interferon inducers, such as STING agonists, chemotherapy, or radiation. Generation of specific small molecule inhibitors targeting ADAR1 exploits this novel vulnerability in lung and other cancers and serves to enhance innate immunity in combination with immune checkpoint inhibitors.

Free full text: Click here