The CT-An software (SkyScan) was used to measure the volume of the gap between the filling material and root canal walls, and the voids in the filling material. Three-dimensional image data were obtained after obturation in the x, y, and z axes for the mesial and distal root axes. The most apical 1 mm was not included in the analysis. The area 1–5 mm from the apex constituted the apical area, and the area 5–9 mm from the apex constituted the coronal area. When measuring the voids between the filling material and the root canal wall (Vout), a gray scale ranging between 40–255 was assigned as the volume of the filling material (Vm) and a gray scale ranging between 0–40 was assigned as a void. When measuring voids inside the filling material (Vin), a gray scale ranging between 124–255 was assigned as the volume of the filling material (Vm), and a gray scale ranging between 0–124 was assigned as a void. The percentage of voids (V%) was calculated as follows:
Micro-CT analysis of root canal filling
The CT-An software (SkyScan) was used to measure the volume of the gap between the filling material and root canal walls, and the voids in the filling material. Three-dimensional image data were obtained after obturation in the x, y, and z axes for the mesial and distal root axes. The most apical 1 mm was not included in the analysis. The area 1–5 mm from the apex constituted the apical area, and the area 5–9 mm from the apex constituted the coronal area. When measuring the voids between the filling material and the root canal wall (Vout), a gray scale ranging between 40–255 was assigned as the volume of the filling material (Vm) and a gray scale ranging between 0–40 was assigned as a void. When measuring voids inside the filling material (Vin), a gray scale ranging between 124–255 was assigned as the volume of the filling material (Vm), and a gray scale ranging between 0–124 was assigned as a void. The percentage of voids (V%) was calculated as follows:
Corresponding Organization : Yonsei University
Protocol cited in 2 other protocols
Variable analysis
- Tooth specimen selection (randomly selected)
- Volume of the gap between the filling material and root canal walls (V_out)
- Voids in the filling material (V_in)
- Percentage of voids (V_%)
- Canal preparation (confirmed consistent across specimens using micro-CT images)
- Micro-CT scanner settings (pixel size, X-ray source voltage, beam current, aluminum filter thickness, rotation step, exposure time)
- Measurement range (1-5 mm and 5-9 mm from the root apex)
- Root axis (mesial root and distal root imaged differently)
- Exclusion of the most apical 1 mm from the analysis
- No positive or negative controls were explicitly mentioned.
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!