Maximum intensity micro-PET images were obtained on a Siemens INVEON small-animal PET/CT scanner (Siemens Medical Solutions USA, Inc., Malvern, PA). The unit has a gantry diameter of 21 cm, a transverse field of view (FOV) of 12.8 cm, and an axial length of 11.6 cm. The scanner operated in a 90 min dynamic, three-dimensional (3D) volume imaging acquisition mode. The mice were laser aligned at the center of the scanner FOV for subsequent imaging. Mice were administered 1.48–15.5 MBq (averaging ~ 7.4 MBq) of [18F]1 in 100 μL of 10% EtOH in saline containing sodium ascorbate via tail vein injection. Immediately after injection, the mice were anesthetized using a 1 L oxygen flow of 3% isoflurane and imaged within 2–5 min of injection. Micro-PET image reconstruction was obtained with an OSEM3D algorithm without tissue attenuation correction. The micro-PET data was analyzed using Siemens Inveon Research Workplace, General Analysis software. The micro-CT images were obtained on a MILabs VECTor6CTUHROI unit (Houten, Utrecht, Netherlands) immediately after micro-PET for the purpose of anatomic/molecular data fusion. The accurate total body, full scan angle micro-CT images were acquired for ~ 8–10 min, and concurrent image reconstruction was achieved using a Hann projection filter algorithm at 100 μm voxel size. Reconstructed DICOM (digital imaging and communication in medicine) micro-CT images were created using PMOD 4.1 software and imported into the Siemens Inveon Research Workplace software for subsequent image fusion with micro-PET for the ROIs overlay to create TACs to access radioisotope uptake and distribution. The second PET/CT scan followed the same imaging protocol as the first PET/CT scan except for the blocking agent (5 mg/kg) was administered intravenously 5 min prior to [18F]1 injection. All mice were sacrificed 24 hours following the completion of the second PET/CT scan, and their hearts and descending aortas were harvested and preserved in 4% paraformaldehyde in phosphate-buffered saline (PBS) solution until further analysis.
Alluri S.R., Higashi Y., Berendzen A., Grisanti L.A., Watkinson L.D., Singh K., Hoffman T.J., Carmack T., Devanny E.A., Tanner M, & Kil K.E. (2023). Synthesis and preclinical evaluation of a novel fluorine-18 labeled small-molecule PET radiotracer for Imaging of CXCR3 receptor In mouse models of atherosclerosis. Research Square.
Administration of blocking agent (5 mg/kg) intravenously 5 min prior to [18F]1 injection
dependent variables
Radioisotope uptake and distribution measured using PET/CT imaging
control variables
Mice laser aligned at the center of the scanner FOV for subsequent imaging
Mice administered 1.48–15.5 MBq (averaging ~ 7.4 MBq) of [18F]1 in 100 μL of 10% EtOH in saline containing sodium ascorbate via tail vein injection
Mice anesthetized using a 1 L oxygen flow of 3% isoflurane and imaged within 2–5 min of injection
Micro-PET image reconstruction obtained with an OSEM3D algorithm without tissue attenuation correction
Micro-CT images acquired for ~ 8–10 min using a Hann projection filter algorithm at 100 μm voxel size
Reconstructed DICOM micro-CT images created using PMOD 4.1 software and imported into the Siemens Inveon Research Workplace software for subsequent image fusion with micro-PET
controls
None specified
None specified
Annotations
Based on most similar protocols
Etiam vel ipsum. Morbi facilisis vestibulum nisl. Praesent cursus laoreet felis. Integer adipiscing pretium orci. Nulla facilisi. Quisque posuere bibendum purus. Nulla quam mauris, cursus eget, convallis ac, molestie non, enim. Aliquam congue. Quisque sagittis nonummy sapien. Proin molestie sem vitae urna. Maecenas lorem.
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to
get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required