We estimated the epidemic growth rate by analyzing data on the cases with illness onset between December 10 and January 4, because we expected the proportion of infections identified would increase soon after the formal announcement of the outbreak in Wuhan on December 31. We fitted a transmission model (formulated with the use of renewal equations) with zoonotic infections to onset dates that were not linked to the Huanan Seafood Wholesale Market, and we used this model to derive the epidemic growth rate, the epidemic doubling time, and the basic reproductive number (R0), which is defined as the expected number of additional cases that one case will generate, on average, over the course of its infectious period in an otherwise uninfected population. We used an informative prior distribution for the serial interval based on the serial interval of SARS with a mean of 8.4 and a standard deviation of 3.8.11 (link)Analyses of the incubation period, serial interval, growth rate, and R0 were performed with the use of MATLAB software (MathWorks). Other analyses were performed with the use of SAS software (SAS Institute) and R software (R Foundation for Statistical Computing).
Early COVID-19 Epidemiological Insights
We estimated the epidemic growth rate by analyzing data on the cases with illness onset between December 10 and January 4, because we expected the proportion of infections identified would increase soon after the formal announcement of the outbreak in Wuhan on December 31. We fitted a transmission model (formulated with the use of renewal equations) with zoonotic infections to onset dates that were not linked to the Huanan Seafood Wholesale Market, and we used this model to derive the epidemic growth rate, the epidemic doubling time, and the basic reproductive number (R0), which is defined as the expected number of additional cases that one case will generate, on average, over the course of its infectious period in an otherwise uninfected population. We used an informative prior distribution for the serial interval based on the serial interval of SARS with a mean of 8.4 and a standard deviation of 3.8.11 (link)Analyses of the incubation period, serial interval, growth rate, and R0 were performed with the use of MATLAB software (MathWorks). Other analyses were performed with the use of SAS software (SAS Institute) and R software (R Foundation for Statistical Computing).
Partial Protocol Preview
This section provides a glimpse into the protocol.
The remaining content is hidden due to licensing restrictions, but the full text is available at the following link:
Access Free Full Text.
Corresponding Organization :
Other organizations : Nanchang Center for Disease Control and Prevention, Hubei Provincial Center for Disease Control and Prevention, University of Hong Kong, Chengdu Center for Disease Control and Prevention
Protocol cited in 361 other protocols
Variable analysis
- None explicitly mentioned
- Epidemic curve by date of illness onset
- Incubation period distribution
- Onset-to-first-medical-visit distribution
- Onset-to-admission distribution
- Serial interval distribution
- Epidemic growth rate
- Epidemic doubling time
- Basic reproductive number (R0)
- None explicitly mentioned
- None specified
- None specified
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!