DNA from blood samples will be used for microarray-based genotyping of MDD candidate genes, genes of relevance for MDD (e.g., rs41271330, 5-HTTLPR, COMT, and BDNFval66met), drug metabolism (e.g., CYP2D6, CYP2C19, UGT1A1, ABCB1, ABCC1) and to compute polygenic risk scores in all participants after genome-wide genotyping in the future. DNA will also be used for epigenetic analysis, and circular extrachromosomal DNA, a form of decomposed free DNA [65 (link)], will be extracted and characterised. RNA will be extracted for gene transcription profiles using microarray or TAG-based methods (mRNA and microRNA).
DNA from blood samples will be used for microarray-based genotyping of MDD candidate genes, genes of relevance for MDD (e.g., rs41271330, 5-HTTLPR, COMT, and BDNFval66met), drug metabolism (e.g., CYP2D6, CYP2C19, UGT1A1, ABCB1, ABCC1) and to compute polygenic risk scores in all participants after genome-wide genotyping in the future. DNA will also be used for epigenetic analysis, and circular extrachromosomal DNA, a form of decomposed free DNA [65 (link)], will be extracted and characterised. RNA will be extracted for gene transcription profiles using microarray or TAG-based methods (mRNA and microRNA).
Gene analyses will be based on a priori models of genetic variations known to modulate pharmacotherapy and psychotherapy responses. The results will be used to calculate a polygenic risk score for diagnosis and treatment response and meta-analyses with established polygenic risk scores for MDD and those currently developed for anxiety and anxiety disorders, including treatment response [66 (link)].