The described modified method was validated following international guidelines [28 ]. The selectivity of peaks was evaluated and phenolic compounds were identified by comparing the retention times, UV spectra of the analytes with those of the reference compounds, and on the basis of previous reports on lingonberry phenolics. The PDA detector was set at a wavelength of 280 nm for proanthocyanidins and catechins, 360 nm for flavonols, 520 nm for anthocyanins, 330 for hydroxycinnamic acids, and 260 nm for hydroxybenzoic acids. All phenolics were quantified according to 5–7 points linear calibration curves of external standards, except well-known predominant compounds of lingonberry leaves—quercetin-3-O-(4”-(3-hydroxy-3-methylglutaryl)-rhamnoside (quercetin-HMG-rhamnoside), and 2-O-caffeoylarbutin, because of commercially unavailable standards. They were tentatively quantified using calibration curves of standard substances with similar chemical structures. Limits of detection (LOD) and of quantification (LOQ) were determined via the signal-to-noise ratio method. The trueness of the method was expressed as percent recoveries of phenolics at low, medium, and high concentrations of range, each analyzed in triplicate. To assess the repeatability and intermediate precision of the method, relative standard deviation percentages (% RSD) of peak areas of each quantified phenolic compound were calculated within (six times per day) and between days (three consecutive days), respectively, resulting in total repeatability of 18 replicates.
Quantification of Lingonberry Phenolics by HPLC
The described modified method was validated following international guidelines [28 ]. The selectivity of peaks was evaluated and phenolic compounds were identified by comparing the retention times, UV spectra of the analytes with those of the reference compounds, and on the basis of previous reports on lingonberry phenolics. The PDA detector was set at a wavelength of 280 nm for proanthocyanidins and catechins, 360 nm for flavonols, 520 nm for anthocyanins, 330 for hydroxycinnamic acids, and 260 nm for hydroxybenzoic acids. All phenolics were quantified according to 5–7 points linear calibration curves of external standards, except well-known predominant compounds of lingonberry leaves—quercetin-3-O-(4”-(3-hydroxy-3-methylglutaryl)-rhamnoside (quercetin-HMG-rhamnoside), and 2-O-caffeoylarbutin, because of commercially unavailable standards. They were tentatively quantified using calibration curves of standard substances with similar chemical structures. Limits of detection (LOD) and of quantification (LOQ) were determined via the signal-to-noise ratio method. The trueness of the method was expressed as percent recoveries of phenolics at low, medium, and high concentrations of range, each analyzed in triplicate. To assess the repeatability and intermediate precision of the method, relative standard deviation percentages (% RSD) of peak areas of each quantified phenolic compound were calculated within (six times per day) and between days (three consecutive days), respectively, resulting in total repeatability of 18 replicates.
Corresponding Organization : Lithuanian University of Health Sciences
Protocol cited in 12 other protocols
Variable analysis
- Gradient elution consisting of 0.1% trifluoroacetic acid in water (eluent A) and acetonitrile (eluent B)
- Flow rate of 0.5 mL/min
- Injection volume of 10 µL
- Column temperature maintained at 35 °C
- Gradient pattern: 0 min, 10% B; 0–40 min, 30% B; 40–60 min, 70% B; 60–64 min, 90% B; 64–70 min, 10% B
- Phenolics in crude extracts and each fraction of lingonberries identified and quantified by HPLC-PDA
- Column: ACE C18 reversed-phase column (250 mm × 4.6 mm, particle size 3 µm)
- Samples dissolved in 70% ethanol until complete dissolution, obtaining a concentration of 1 mg/mL, and filtered through a pore size 0.2 µm PVDF syringe filters
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!