MACS is implemented in Python and freely available with an open source Artistic License at [16 ]. It runs from the command line and takes the following parameters: -t for treatment file (ChIP tags, this is the ONLY required parameter for MACS) and -c for control file containing mapped tags; --format for input file format in BED or ELAND (output) format (default BED); --name for name of the run (for example, FoxA1, default NA); --gsize for mappable genome size to calculate λBG from tag count (default 2.7G bp, approximately the mappable human genome size); --tsize for tag size (default 25); --bw for bandwidth, which is half of the estimated sonication size (default 300); --pvalue for p-value cutoff to call peaks (default 1e-5); --mfold for high-confidence fold-enrichment to find model peaks for MACS modeling (default 32); --diag for generating the table to evaluate sequence saturation (default off).
In addition, the user has the option to shift tags by an arbitrary number (--shiftsize) without the MACS model (--nomodel), to use a global lambda (--nolambda) to call peaks, and to show debugging and warning messages (--verbose). If a user has replicate files for ChIP or control, it is recommended to concatenate all replicates into one input file. The output includes one BED file containing the peak chromosome coordinates, and one xls file containing the genome coordinates, summit, p-value, fold_enrichment and FDR (if control is available) of each peak. For FoxA1 ChIP-Seq in MCF7 cells with 3.9 million and 5.2 million ChIP and control tags, respectively, it takes MACS 15 seconds to model the ChIP-DNA size distribution and less than 3 minutes to detect peaks on a 2 GHz CPU Linux computer with 2 GB of RAM. Figure S6 in Additional data file 1 illustrates the whole process with a flow chart.
Free full text: Click here