Genome Assembly and Validation of Brassica oleracea
We took a series of checking and filtering measures on reads following the Illumina-Pipeline, and low-quality reads, adaptor sequences and duplicates were removed (Supplementary Methods). The reads after the above filtering and correction steps were used to perform assembly including contig construction, scaffold construction and gap filling using SOAPdenovo1.04 ( http://soap.genomics.org.cn/) (Supplementary Methods). Finally, we used 20-kb-span paired-end data generated from the 454 platform and 105-kb-span BAC-end data downloaded from NCBI ( http://www.ncbi.nlm.nih.gov/nucgss?term=BOT01) to extend scaffold length (Supplementary Methods). The B. oleracea genome size was estimated using the distribution curve of 17-mer frequency (Supplementary Methods). To anchor the assembled scaffolds onto pseudo-chromosomes, we developed a genetic map using a double haploid population with 165 lines derived from a F1 cross between two homozygous lines 02–12 (sequenced) and 0188 (re-sequenced). The genetic map contains 1,227 simple sequence repeat markers and single nucleotide polymorphism markers in nine linkage groups, which span a total of 1,180.2 cM with an average of 0.96 cM between the adjacent loci16 (link). To position these markers to the scaffolds, marker primers were compared with the scaffold sequences using e-PCR (parameters -n2 -g1 –d 400–800), with the best-scoring match chosen in case of multiple matches. We validated the B. oleracea genome assembly by comparing it with the published physical map constructed using 73,728 BAC clones ( http://lulu.pgml.uga.edu/fpc/WebAGCoL/brassica/WebFPC/)17 (link) and a genetic map from B. napus18 (link) (Supplementary Methods). Eleven Sanger-sequenced B. oleracea BAC sequences were used to assess the assembled genome using MUMmer-3.22 ( http://mummer.sourceforge.net/) (Supplementary Methods).
Partial Protocol Preview
This section provides a glimpse into the protocol. The remaining content is hidden due to licensing restrictions, but the full text is available at the following link:
Access Free Full Text.
Liu S., Liu Y., Yang X., Tong C., Edwards D., Parkin I.A., Zhao M., Ma J., Yu J., Huang S., Wang X., Wang J., Lu K., Fang Z., Bancroft I., Yang T.J., Hu Q., Wang X., Yue Z., Li H., Yang L., Wu J., Zhou Q., Wang W., King G.J., Pires J.C., Lu C., Wu Z., Sampath P., Wang Z., Guo H., Pan S., Yang L., Min J., Zhang D., Jin D., Li W., Belcram H., Tu J., Guan M., Qi C., Du D., Li J., Jiang L., Batley J., Sharpe A.G., Park B.S., Ruperao P., Cheng F., Waminal N.E., Huang Y., Dong C., Wang L., Li J., Hu Z., Zhuang M., Huang Y., Huang J., Shi J., Mei D., Liu J., Lee T.H., Wang J., Jin H., Li Z., Li X., Zhang J., Xiao L., Zhou Y., Liu Z., Liu X., Qin R., Tang X., Liu W., Wang Y., Zhang Y., Lee J., Kim H.H., Denoeud F., Xu X., Liang X., Hua W., Wang X., Wang J., Chalhoub B, & Paterson A.H. (2014). The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nature Communications, 5, 3930.
Other organizations :
Chinese Academy of Agricultural Sciences, BGI Group (China), University of Queensland, Agriculture and Agri-Food Canada, North China University of Science and Technology, University of Georgia, University of York, Seoul National University, Sichuan Academy of Agricultural Sciences, Southern Cross University, University of Missouri, Jiangsu Academy of Agricultural Sciences, Australian Research Council, National Research Council Canada, Australian Centre for Plant Functional Genomics, Agriculture and Food, Sahmyook University, Huazhong Agricultural University, South Central University for Nationalities, Institut de Génomique Fonctionnelle, Génomique Métabolique du Genoscope, University of Hong Kong, King Abdulaziz University, Flagstaff Medical Center
SOAPdenovo1.04 assembly including contig construction, scaffold construction and gap filling
Use of 20-kb-span paired-end data from 454 platform and 105-kb-span BAC-end data from NCBI to extend scaffold length
Development of a genetic map using a double haploid population with 165 lines derived from a F1 cross between two homozygous lines 02-12 and 0188
dependent variables
Quality of assembled genome
Accuracy of scaffold positioning on pseudo-chromosomes
control variables
Sanger-sequenced B. oleracea BAC sequences used to assess the assembled genome
Comparison of the assembled genome with the published physical map and a genetic map from B. napus
Annotations
Based on most similar protocols
Etiam vel ipsum. Morbi facilisis vestibulum nisl. Praesent cursus laoreet felis. Integer adipiscing pretium orci. Nulla facilisi. Quisque posuere bibendum purus. Nulla quam mauris, cursus eget, convallis ac, molestie non, enim. Aliquam congue. Quisque sagittis nonummy sapien. Proin molestie sem vitae urna. Maecenas lorem.
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to
get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required