For the ARB evaluation, the 10-fold cross validation results stored at IEDB was used to estimate performance since ARB was trained on datasets overlapping with the one used in this study. For the other seven tools in the evaluation, we wrote python script wrappers to automate prediction retrieval. For the SYFPEITHI prediction, we patched each testing peptide with three Glycine residues at both ends before we submitted it for prediction. This was recommended by the creators of SYFPEITHI method to ensure that all potential binders are presented to the prediction algorithm. For all other methods, the original testing peptides were submitted directly for prediction. Peptide sequences were sent to the web servers one at a time and predictions were extracted from the server's response. To assign a single prediction for peptides longer than nine amino acids in the context of tools predicting the affinity of 9-mer core binding regions, we took the highest affinity prediction of all possible 9-mers within the longer peptide as the prediction result.
Evaluating MHC Class II Prediction Tools
For the ARB evaluation, the 10-fold cross validation results stored at IEDB was used to estimate performance since ARB was trained on datasets overlapping with the one used in this study. For the other seven tools in the evaluation, we wrote python script wrappers to automate prediction retrieval. For the SYFPEITHI prediction, we patched each testing peptide with three Glycine residues at both ends before we submitted it for prediction. This was recommended by the creators of SYFPEITHI method to ensure that all potential binders are presented to the prediction algorithm. For all other methods, the original testing peptides were submitted directly for prediction. Peptide sequences were sent to the web servers one at a time and predictions were extracted from the server's response. To assign a single prediction for peptides longer than nine amino acids in the context of tools predicting the affinity of 9-mer core binding regions, we took the highest affinity prediction of all possible 9-mers within the longer peptide as the prediction result.
Corresponding Organization : La Jolla Institute For Allergy & Immunology
Other organizations : California State University, San Marcos
Protocol cited in 66 other protocols
Variable analysis
- Mapping the MHC types for which predictions could be made to the four-digit HLA nomenclature
- Patching each testing peptide with three Glycine residues at both ends before submitting it for SYFPEITHI prediction
- Performance evaluation of the eight publicly available MHC class II prediction tools
- If the mapping of MHC types to four-digit HLA nomenclature could not be done exactly, that type/tool combination was left out of the evaluation
- For the ARB evaluation, the 10-fold cross validation results stored at IEDB were used to estimate performance since ARB was trained on datasets overlapping with the one used in this study
- For the other seven tools in the evaluation, python script wrappers were used to automate prediction retrieval
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!