To quantify axonal growth, we adapted the Sholl method of concentric rings to our cultures. Prior to processing, images were modified with ImageJ v1.5.3 (National Institutes of Health, Bethesda, MD) to eliminate fluorescence background and artefacts. For application of the Sholl analysis, we employed the ShollAnalysis ImageJ plug-in, which counts the number of intersections of neurites as a function of distance from the cell soma or explant. Immunofluorescent images were imported into ImageJ and converted in greyscale, the size scale was set accordingly, and the brightness/contrast threshold was selected manually to remove the thinner and shorter neurites emerging from the clusters. Sholl analysis was performed by selecting the centre of the neuronal body cluster as the centre of outgrowth (start radius = 0 inch) and using a step size of 0.5 inch and an end radius of 8 inch. These parameters were chosen to divide the image into concentric annuli at a radial distance of 1000 μm from each other. Intersections were counted from the border of the neuronal body cluster (set as 0 μm) outwards. Results were inputted into GraphPad Prism 9.2.0 software and statistical analysis was performed between CT and FRDA groups at each individual distance from the body cluster (two-way ANOVA with Bonferroni’s test for multiple comparisons; *P < 0.05, **P < 0.01, ***P < 0.001).
Quantifying Neurite Outgrowth via Sholl Analysis
To quantify axonal growth, we adapted the Sholl method of concentric rings to our cultures. Prior to processing, images were modified with ImageJ v1.5.3 (National Institutes of Health, Bethesda, MD) to eliminate fluorescence background and artefacts. For application of the Sholl analysis, we employed the ShollAnalysis ImageJ plug-in, which counts the number of intersections of neurites as a function of distance from the cell soma or explant. Immunofluorescent images were imported into ImageJ and converted in greyscale, the size scale was set accordingly, and the brightness/contrast threshold was selected manually to remove the thinner and shorter neurites emerging from the clusters. Sholl analysis was performed by selecting the centre of the neuronal body cluster as the centre of outgrowth (start radius = 0 inch) and using a step size of 0.5 inch and an end radius of 8 inch. These parameters were chosen to divide the image into concentric annuli at a radial distance of 1000 μm from each other. Intersections were counted from the border of the neuronal body cluster (set as 0 μm) outwards. Results were inputted into GraphPad Prism 9.2.0 software and statistical analysis was performed between CT and FRDA groups at each individual distance from the body cluster (two-way ANOVA with Bonferroni’s test for multiple comparisons; *P < 0.05, **P < 0.01, ***P < 0.001).
Corresponding Organization : McGill University
Other organizations : Centre National de la Recherche Scientifique, Université de Strasbourg, Inserm, Institut NeuroMyoGène, Université Claude Bernard Lyon 1
Variable analysis
- Neuron differentiation protocol
- Neurite outgrowth
- Cell seeding density (2500 cells/cylinder)
- Cell culture conditions
- Immunofluorescence staining procedures
- Imaging techniques
- Sholl analysis parameters (start radius = 0 inch, step size = 0.5 inch, end radius = 8 inch)
- Not explicitly mentioned
- Not explicitly mentioned
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!