Bone structures from L1 to S1, including cortical shells, cancellous cores, and posterior structures, were directly reconstructed on the basis of high-resolution computed tomography imaging data. The latter was obtained from a 24-year-old male volunteer with no history of lumbar diseases [6 (link), 12 (link), 35 (link)]. Reconstructed bone structures were used as templates of the subsequent model construction. The template was layered, and contours were set with the fitted curves on each layer to replace irregular surfaces and structures. The external contours of the new model were overlapped with the template. Compared with those of ‘model reconstructive’ and ‘standard geometry’ methods, this modeling method not only eliminates irregular surfaces and structures and strictly symmetric along the sagittal plane but also retains the outer contour of the structures from imaging data (i.e. reduce structural distortion) (Fig. 1).
To be consistent with the segment selection via MRI, the bone structures of the L4–L5 segments were selected, and the corresponding non-bone structures were constructed with the fitted curves; the facet joint gap was set as 0.5 mm. The centroid of the annulus outlines and the inferior surface of L4 were defined as the same point for the accurate placement of the annulus. Six different ligaments and a capsule of facet joints were constructed during the FEA preprocessing phase (Fig. 4) [5 (link), 10 (link), 37 (link)]. The definition of the relative nucleus position and its cross-sectional area ratio were confirmed according to P1 and P2, and the outer contour of the nucleus was obtained using the same ratio reduction as that of the disc contour to ensure that the intervertebral disc and nucleus have the same central point, for easy adjustment during the calibration process.

Intact model and components of the current models

Free full text: Click here