Data entry and management were performed using Epidata software, version 3.1 (Epidata Association, Odense, Denmark). All statistical analyses were conducted with SPSS 22.0 (IBM, Armonk, NY, USA) and R language software (version 4.1.1). Continuous variables were expressed as the mean ± standard deviation, and categorical variables as frequencies (percentages). The chi-square test was used to compare categorical variables. The linear tendency was evaluated among several groups using trend test. The independent-sample t-test and one-way analysis of variance (ANOVA) were used to compare continuous variables among two or more groups. Multiple logistic regression analysis was used to assess the independence of the associations between obesity indicators and various abnormalities of peripheral arteries, and the odds ratio (OR) and 95% confidence interval (95% CI) was calculated. We also explored the nonlinear relationship between BMI and the risk of ABI ≤ 0.9 using a restricted cubic spline model by multivariable adjustment with three knots (at the 10th, 50th, and 90th percentiles). P < 0.05, which is two-sided, was considered significant.
Free full text: Click here