To test for island-wide changes in the densities of COTS in each of the three habitat types, we used generalized linear models with a quasipoisson distribution (to account for overdispersion) and log link function. Changes in the percent cover of coral and algae and in the density and biomass of herbivorous fishes and sea urchins were evaluated using mixed-effects ANOVA (fixed effect = year, random effect = site). Fishes were categorized as herbivorous if they fed primarily on algae (filamentous or fleshy) and/or detritus (mainly surgeonfishes and parrotfishes). Biomass of herbivorous fishes was estimated using published length/weight relationships [58] . In contrast to fish, the body sizes of sea urchins are not estimated in our surveys. To compare the biomass of herbivorous sea urchins and fish on the forereef, the biomass of each sea urchin species was estimated using representative size distributions from forereef populations in Moorea and published length-weight relationships. For both fish and sea urchins we focused on species likely to be important in controlling the establishment and growth of macroalgae. As such, the sea urchin Echinostrephus aciculatus, which feeds primarily on drift algae, was excluded from calculations of herbivore abundance and biomass, as were small, territorial herbivorous fishes (mainly small damselfishes, angelfishes and blennies). Additional methodological details are presented in
Long-Term Coral Reef Ecology Monitoring
To test for island-wide changes in the densities of COTS in each of the three habitat types, we used generalized linear models with a quasipoisson distribution (to account for overdispersion) and log link function. Changes in the percent cover of coral and algae and in the density and biomass of herbivorous fishes and sea urchins were evaluated using mixed-effects ANOVA (fixed effect = year, random effect = site). Fishes were categorized as herbivorous if they fed primarily on algae (filamentous or fleshy) and/or detritus (mainly surgeonfishes and parrotfishes). Biomass of herbivorous fishes was estimated using published length/weight relationships [58] . In contrast to fish, the body sizes of sea urchins are not estimated in our surveys. To compare the biomass of herbivorous sea urchins and fish on the forereef, the biomass of each sea urchin species was estimated using representative size distributions from forereef populations in Moorea and published length-weight relationships. For both fish and sea urchins we focused on species likely to be important in controlling the establishment and growth of macroalgae. As such, the sea urchin Echinostrephus aciculatus, which feeds primarily on drift algae, was excluded from calculations of herbivore abundance and biomass, as were small, territorial herbivorous fishes (mainly small damselfishes, angelfishes and blennies). Additional methodological details are presented in
Protocol cited in 11 other protocols
Variable analysis
- Densities of crown-of-thorns starfish (COTS, Acanthaster planci)
- Percent cover of coral
- Percent cover of algae
- Density of herbivorous fishes
- Biomass of herbivorous fishes
- Density of herbivorous sea urchins
- Biomass of herbivorous sea urchins
- None mentioned
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!