Subsequently, we focused on the distribution of reads that map to transcripts without alternatively processed forms. To define such transcripts, we considered a standard reference annotation of the transcriptome, i.e. the SGD annotation for yeast (31 (link)), the TAIR annotation for cress (32 (link)) and the murine as well as the human RefSeq annotation (33 (link)). This procedure provided us with mappings for 6 606 768 reads (47%) from yeast, 351 336 reads (65%) from cress and for 21 359 481 reads (68%) from mouse, and with 530 996 reads that map in proper pairs to the spike-in control sequences. Due to substantially different data set sizes (90 million versus 13 million reads), in the case of the human FRT- and the STD-Seq experiments, we extracted subsets of reads of suitable size before mapping to ensure comparability (
Comparative RNA-Seq Analysis Across Species
Subsequently, we focused on the distribution of reads that map to transcripts without alternatively processed forms. To define such transcripts, we considered a standard reference annotation of the transcriptome, i.e. the SGD annotation for yeast (31 (link)), the TAIR annotation for cress (32 (link)) and the murine as well as the human RefSeq annotation (33 (link)). This procedure provided us with mappings for 6 606 768 reads (47%) from yeast, 351 336 reads (65%) from cress and for 21 359 481 reads (68%) from mouse, and with 530 996 reads that map in proper pairs to the spike-in control sequences. Due to substantially different data set sizes (90 million versus 13 million reads), in the case of the human FRT- and the STD-Seq experiments, we extracted subsets of reads of suitable size before mapping to ensure comparability (
Partial Protocol Preview
This section provides a glimpse into the protocol.
The remaining content is hidden due to licensing restrictions, but the full text is available at the following link:
Access Free Full Text.
Corresponding Organization :
Other organizations : Centro Nacional de Análisis Genómico
Protocol cited in 40 other protocols
Variable analysis
- RNA-Seq protocols (flowcell RT-Seq (FRT) and standard hydrolysis (STD) protocol)
- Distribution of reads that map to transcripts without alternatively processed forms
- Reference genome sequence
- Standard reference annotation of the transcriptome (SGD annotation for yeast, TAIR annotation for cress, murine and human RefSeq annotation)
- Read mapping and splitting using the GEM library and BLAT for cress data set
- Subsets of reads from human FRT- and STD-Seq experiments to ensure comparability
- Positive control: RNA control sequences spiked-in in high concentrations
- Negative control: Not explicitly mentioned
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!