The neocortex of the brain on the MRI scans was then automatically subdivided into 32 gyral-based ROIs (in each hemisphere). To accomplish this, a registration procedure was used that aligns the cortical folding patterns (Fischl et al., 1999b ) and probabilistically assigns every point on the cortical surface to one of the 32 ROIs (Desikan et al., 2006 (link)). In addition, two non-neocortical regions of the brain, namely the amygdala and the hippocampus, were automatically delineated using an algorithm that examines variations in voxel intensities and spatial relationships to classify non-neocortical regions on MRI scans (Fischl et al., 2002 (link)).
The anatomic accuracy of the grey and white matter surfaces as well as each of the individual ROIs was carefully reviewed by a trained neuroanatomist (RSD), with particular attention to the medial temporal lobe where non-brain tissue, such as dura mater and temporal bone, often needs to be excluded. All of the MRI scans were processed on a Linux cluster machine with 230 nodes, each with a 2 GHz AMD Opteron CPU (Advanced Micro Devices, Sunnyvale, CA, USA) and 4 GB RAM. Processing time for each MRI scan was ∼25–40 h. The cluster machine allows for the processing of 230 MRI scans simultaneously.
In total, 34 neocortical and non-necortical ROIs were used in this study. For all of the analyses performed here, the mean thickness (only neocortical regions) and the volume (both neocortical and non-neocortical regions) of the right and the left hemispheres, for each ROI, were added together. In order to account for differences in head size, the total volume for each ROI was corrected using a previously validated estimate of the total intracranial volume (eTIV) (Buckner et al., 2004 (link)).
Three-dimensional representations of all 34 ROIs examined in the current study (only one hemisphere is shown). All of the neocortical ROIs visible in (