There are technical drivers of research priorities: the tools we have. As soon as certain aspects of plant functioning become measurable, we start using those tools and assign overarching significance to these measurements, perhaps, because we aim at doing important things, simply because we are important, at least to ourselves. Things we cannot measure or observe become a matter of unimportance. Although we will continue to depend on scientific tools and their availability, the challenge is, not to get trapped in studying what we have tools for, but to go beyond, based on the challenges posed by theory, developing novel approaches that will permit us entering the terrain that remained largely unexplored for methodological reasons.
As was explained above, water shortage and low temperature, and to some extent nutrient shortage, are not primarily affecting plant carbon capture (photosynthesis), but rather affect tissue formation directly. Well known in plant physiology, plant ecologists tend to overlook the great sensitivity of meristematic tissues to low turgor pressure, low temperature, and shortage in key nutrients. These tissues stop building new cells at water potentials, low temperatures, and critically low nutrient supply that still permit reasonably high rates of photosynthetic CO2 uptake. Not surprisingly, the initial response of plants to such tissue-level growth constraints leads to an accumulation of non-structural carbon-metabolites (osmotically inactive ones such as starch and lipids), rather than to carbon-starvation (Körner, 2003 (link)). This discrepancy between awareness and reality roots in the convenient tools and techniques we have to measure photosynthesis and the absence of tools to monitor cell division and cell differentiation in situ, and/or to assess discrepancies between demand and supply of photoassimilates.
Another example for our methods driven priorities is the generally great significance attributed to air conditioning or to climate aspects in general when manipulative experiments are designed (e.g., CO2-enrichment works), although soils exert far greater influences on plant responses to what ever treatment we apply. I invite readers to check the length authors spend on describing atmospheric conditions in their experiments versus the soil conditions. The simple reason is that we can engineer atmospheric conditions, but we have no means to engineer plant–soil or plant–soil–microbe interactions, as decisive these might be. To my knowledge, the only experiment where the response of plants to a high CO2-environment were tested with plants growing in two different soil types (see Spinnler et al., 2002 (link)), revealed two different story lines, just depending on which soil was chosen. The challenge is to arrive at a broad appreciation that soil conditions (e.g., disturbed or undisturbed) are pre-determining experimental results. I join Högberg et al. (2005 ) in their viewing soil microbiota associated with roots as an integral part of plant functioning, to the extent, that they may actually be seen as part of the autotrophic system, rather than belonging to the heterotrophic world.
On a similar avenue, root research was and still is a minor fraction compared to leaf research, although there is no theoretical reason for such a posteriority. Both are equally significant, in fact roots may be more influential with respect to limiting resources. The only reason is methodology. While a leaf can be studied in isolation (e.g., some sensors mounted to it), a root does not function properly without its intact rhizosphere, apart from its poor visibility. We can “bring” the atmosphere into the lab (growth chambers), but we cannot bring a coupled rhizosphere to the lab. Any pot experiment is confounded as soon as plants respond differently to two treatments, because, inevitably, the treatment changes the root-space/plant size relationship. So the challenge here is testing hypothesis on plant responses with plants grown with unconstrained, well-developed soil biota in action. Most commonly, this can only be done in the field.