Magnetic resonance imaging was performed at the UCSD Radiology Imaging Laboratory on a General Electric 1.5T EXCITE HD scanner with an 8-channel phased-array head coil. Image acquisitions included a conventional 3-plane localizer, GE calibration scan, two T1-weighted 3D structural scans (TE = 3.8ms, TR=10.7ms, TI = 1sec, flip angle= 8 deg, bandwidth=15.63 kHz, FOV=25.6 cm, matrix=192×192, slice thickness=1.0mm), and five diffusion-weighted (DW) sequences. Diffusion data were acquired using single-shot echo-planar imaging with isotropic 2.5 mm voxels (matrix size=96×96, FOV=24 cm, 47 axial slices, slice thickness=2.5 mm), covering the entire cerebrum and brainstem without gaps. Three volume series were acquired with 51 diffusion gradient directions using b-value of 600 mm2/s (TE/TR 68.4/10,900), 800 mm2/s (TE/TR 72.3/11,700), and 1,000 (TE/TR 75.6/12,300) mm2/s, each with an additional b=0 volume. For use in nonlinear B0 distortion correction, two additional series were acquired with opposite phase encoding polarity.