The backbone of our genome assembly was largely based on pyrosequencing reads. First, we assembled quality-filtered reads to build contigs using the default settings of Newbler (version 2.5.3). Second, we mapped the SOLiD mate-pair tags using BioScope (version 1.3) to the Newbler consensus contigs and estimated gap length according to insert sizes of the mate-pair libraries using a SOLiD-specific tool called HAPS (version 0.1.200; http://solidsoftwaretools.com/gf/project/haps/) with the linked read number ≥10. After filtering out short and repeat-containing contigs, we used the unique contigs (≥500 bp) to build super-contigs. Third, we filled gaps in the super-contigs by using both the Newbler contigs and pyrosequencing reads with a minimal 15-bp matched end. Finally, we used the BACs whose two end sequences were properly aligned to the super-contigs to construct the final scaffolds. The genome annotation files, mapping results of date palm varieties, mapping results of transcriptome data, and the assembled full-length cDNA sequences are available at the JCGR website ( http://www.kacst.edu.sa/en/depts/jcg/home/Pages/default.aspx).