Neurocognitive disorders are progressing particularly in the elderly. It was our objective to investigate early signs of neurodegeneration and of small vessel disease and their neurocognitive correlates. In addition we were interested whether obesity is mirrored in brain structures and functions. To obtain a structural and functional MRI assessment of the brain the following magnetic resonance pulse sequences were applied: i) Magnetization prepared rapid gradient echo using a 3D T1-weighted pulse sequence in order to assess brain structure and to highlight differences between grey and white matter. Based on these data, voxel-based morphometry and cortical thickness measurements were performed. ii) Diffusion weighted imaging at 60 different angles using pulse sequences, which are sensitive to water diffusion and its direction. Based on this information, parameters characterizing white matter such as various characteristics of the diffusion tensor (axial, radial diffusivity, fractional anisotropy etc.) were determined. iii) Resting state functional MRI. Here, oxygenation changes were investigated during rest as a measure for functional connectivity. iv) Fluid-attenuated inversion recovery, which is highly sensitive for the identification of white matter lesions. v) Susceptibility weighted imaging using a T2*-weighted pulse sequence, which is highly sensitive to brain hemorrhage. vi) MR-angiography, which was used for the assessment of arterial brain vessels, e.g. to identify aneurysms.
Structural and functional MRI parameters were used to identify specific neurodegenerative diseases and its pre-stages, subjective and mild cognitive impairment. For Alzheimer’s disease we focussed on atrophy in hippocampal regions and connectivity changes in temporoparietal brain networks, for subtypes of frontotemporal lobar degeneration on changes in structure and function of respective brain regions, for vascular diseases such as small vessel diseases on automatic detection of white matter lesions and changes in connectivity measures [22 (link)–25 (link)].
Free full text: Click here