Blood samples were collected from all cows all at one time. The samples were collected in the morning, before the feed distribution, by venipuncture from the jugular vein, using 10-mL Li-heparin treated tubes (Vacuette, containing 18 IU of Li-heparin mL−1, Kremsmünster, Austria). Samples were immediately cooled in an ice-water bath after collection. The blood was centrifuged (3500 × g for 16 min at 4 °C) and the plasma obtained was separated into two aliquots: the first fraction was immediately used to collect the infrared spectra; the second one was stocked at −20 °C until metabolites analysis and the results were used as calibration values. Plasma metabolites used as calibrating values were analyzed at 37 °C by an automated clinical analyzer (ILAB 600, Instrumentation Laboratory, Lexington, MA), using the methodology showed in Table 1. Commercial kits were used to measure glucose, total cholesterol, urea, calcium, inorganic phosphorus, magnesium, total protein, albumin, total bilirubin, and creatinine (Instrumentation Laboratory SpA, Werfen, Monza, Milan, Italy), NEFA and zinc (Wako, Chemicals GmbH, Neuss, Germany), and β-OH-butyric acid (BHBA, kit Ranbut, Randox Laboratories Limited, Crumlin, County Antrim, United Kingdom Randox, UK). A Trinder end point [Glucose oxidase (GOD)/Peroxidase (POD)] was used to measure glucose. Total cholesterol (cholesterol and cholesterol esters) was also measured using Trinder end point [Cholesterol oxidase (CHOD)/Peroxidase (POD)], after a hydrolysis of cholesterol esters to free cholesterol. Urea was measured with end point method using the couple urease glutamate dehydrogenase (GLDH) enzyme system. Colorimetric methodology based on the reaction of calcium with o-cresolphthalein complexone was used to measure Ca with end point method. Inorganic phosphorus was measured with end point UV method, based on the reaction between phosphate ions in an acidic medium with ammonium molybdate to form a phosphomolybdate complex. The magnesium determination was based on the reaction of magnesium with Xylidyl Blue (as chelator) at alkaline pH, which yields a purple colored complex. Total protein were measured with the modified biuret methodology, based on the reaction of peptide bonds with Cu++ ions in alkaline solution to form a colored complex. Albumin was measured with an end point colorimetric method, based on the binding between albumin with green bromocresol resulting in a spectral change of the dye from yellow to green. Total bilirubin was determined with an end point analysis using modified Jendrassik-Grof method, based on the reaction between total bilirubin with diazotized sulfanilic acid in presence of lithium dodecylsulfate to form azobilirubin. Creatinine was analyzed with an end point colorimetric method, based on the reaction of creatinine with picric acid under alkaline conditions. NEFA were determined with an Trinder end point [Acyl coenzyme A oxidase (ACOD)/Peroxidase (POD)] assay, after the acylation of coenzyme A by NEFA contained in the sample. BHBA was measured with a kinetic UV method, based on the oxidation od D-3 hydroxybutyrate to acetoacetate by 3-Hydroxybutyrate dehydrogenase. Electrolytes, Na, K, and Cl, were measured using a potentiometric system, with specific electrodes. Kinetic analysis was adopted to determine the activity of enzymes: alkaline phosphatase (AP, EC 3.1.3.1), aspartate aminotransferase (AST, EC 2.6.1.1), γ-glutamyltransferase (GGT, EC 2.3.2.2) using Instrumentation Laboratory kits (Instrumentation Laboratory SpA, Werfen, Monza, Milan, Italy). Ceruloplasmin was measured using the method described by Sunderman and Nomoto [16 (link)], adapted to ILAB 600 condition. The method is based on measurement of p-phenylenediamine dihydrochloride oxidation by the oxidase activity of ceruloplasmin. Finally, haptoglobin was measured using the method described by Skinner et al. [17 (link)] and Owen et al. [18 (link)] and adapted to ILAB 600 condition. The method is based on peroxidase activity of methaemoglobin-haptoglobin complex measured by the rate of oxidation of guaiacol (hydrogen donor) in presence of hydrogen peroxide (oxidizing substrate).
Methodologies used to measure the plasma parameters with reference methods
Parameter
Methodology
Wavelength (nm)
CVa
Glucose
Endpoint
510
1.50
Total cholesterol
Endpoint
510
2.10
NEFAb
Endpoint
546
1.50
BHBAc
Endpoint
340
5.25
Urea
Endpoint
340
1.20
Creatinine
Endpoint
510
5.40
Ca
Endpoint
570
1.40
Inorganig P
Endpoint
340
2.00
Mg
Rate
340
1.40
Na
ISE deviceg
0.90
K
ISE deviceg
1.30
Cl
ISE deviceg
1.50
Zn
Endpoint
546
Ceruloplasmin
Endpoint
546
3.48
Total protein
Endpoint
546
1.20
Albumin
Endpoint
600
1.80
Total bilirubin
Endpoint
546
6.70
Haptoglobin
Endpoint
450
13.54
ASTd
Rate
340
2.10
GGTe
Rate
405
3.72
APf
Rate
405
1.70
aCalculared on the results obtained between runs according to the National Committee for Clinical Laboratory Standards (Document EP3-T: Guidelines for Manufacturers for Establishing
Performance Claims for Clinical Chemistry Methods, Replication Experiment
Calamari L., Ferrari A., Minuti A, & Trevisi E. (2016). Assessment of the main plasma parameters included in a metabolic profile of dairy cow based on Fourier Transform mid-infrared spectroscopy: preliminary results. BMC Veterinary Research, 12, 4.
Publication 2016
Corresponding Organization : Università Cattolica del Sacro Cuore
Time of sample collection (morning, before feed distribution)
Venipuncture site (jugular vein)
Sample collection tubes (10-mL Li-heparin treated tubes, Vacuette, containing 18 IU of Li-heparin mL^-1)
Immediate cooling of samples in ice-water bath after collection
Centrifugation conditions (3500 × g for 16 min at 4 °C)
Temperature for plasma metabolite analysis (37 °C)
Automated clinical analyzer (ILAB 600)
Commercial kits used for specific analyses
positive controls
Not specified
negative controls
Not specified
Annotations
Based on most similar protocols
Etiam vel ipsum. Morbi facilisis vestibulum nisl. Praesent cursus laoreet felis. Integer adipiscing pretium orci. Nulla facilisi. Quisque posuere bibendum purus. Nulla quam mauris, cursus eget, convallis ac, molestie non, enim. Aliquam congue. Quisque sagittis nonummy sapien. Proin molestie sem vitae urna. Maecenas lorem.
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to
get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required