Real-time deformability cytometry (RT-DC) is used for high-throughput mechanical cell and spheroid characterization. The system is built on a commercial solution (AcCellerator, Zellmechanik Dresden) consisting of an inverted microscope (Axio Observer A.1, Zeiss), a CMOS camera (MC1362, Mikrotron), a microsecond-pulsed LED illumination (L1, Zellmechanik Dresden), and a dedicated syringe pump (NemeSys, Cetoni).
Either a microfluidic chip or a glass cuvette is assembled on the xy-stage of the microscope. Cells or spheroids translocate through a constriction and deform by hydrodynamic shear and normal stress26 (link),27 (link). Image acquisition and analysis are performed in real-time with a throughput exceeding 1000 cells or 10 spheroids per second (depending on initial concentration) and deformation is quantified using the circularity of each particle: Deformation=1Circularity=12πAreaPerimeter.
Measurements on single cells are performed using a 40x objective (PDMS chip: Apochromat, Zeiss; glass cuvette: LD Plan Neofluar, Zeiss) with an optical resolution of 0.34 µm per pixel, and on spheroids using a 20x objective (LDC, Zeiss) with 0.68 µm per pixel.
Free full text: Click here