Lens transparency was assessed as described by Kumari et al.37 (link) In brief, lenses of WT, AQP0+/−, AQP0−/−, AQP0+/ΔC, or AQP0ΔC/ΔC mice were dissected out in prewarmed (37°C) mammalian physiological saline. Images of these lenses were captured under the same lighting and imaging conditions with the aid of a dark-field binocular microscope attached to a digital camera. Lens transparency was quantified from the dark field lens images using ImageJ software (http://imagej.nih.gov/ij/; provided in the public domain by the National Institutes of Health, Bethesda, MD, USA). Pixel brightness intensity data were translated into a histogram using SigmaPlot 10 software (Systat Software, Inc., San Jose, CA, USA). Qualitative evaluation of lens aberrations was performed using dark-field optical grid focusing. A copper electron microscope specimen grid was imaged through a whole lens placed on it. Quality of the grid lines focused was appraised for light scatter and aberrations due to refractive index gradient alteration.