For each hypoglycaemic event class, up to four different event frequencies (health states) were evaluated (Additional file
Statistical results for the type 1 and type 2 diabetes populations contain combined data from any general population respondents with type 1 or type 2 diabetes and data from the respective type 1 or type 2 diabetes populations.
As the response distribution was unknown but suspected to be non-normal, non-parametric bootstrapping was used to simulate standard errors and confidence intervals (CIs) for the mean TTO values. This method estimates the parameter’s distribution by repeatedly resampling the original data set with replacement [37 (link)-39 (link)]. For the present study, 10,000 iterations were performed.
Because it is rare for a patient with diabetes to experience severe hypoglycaemic events without non-severe events, some of the worries and limits to daily activities may already be accounted for by the disutility associated with non-severe events. Therefore, the initial disutility value (determined as the intercept in a regression model) for non-severe hypoglycaemic events was subtracted from the value obtained for severe hypoglycaemic events.