The animals were anesthetized and placed in ventral recumbancy on the GE LightSpeed 16 Slice CT scanner (GE Medical Systems). The scans (0.625 mm resolution, 120 kV) were conducted on all animals at 2 months pre-surgery, immediately, and at 6 weeks, 3 months, and 6 months following surgery. μCT imaging (50 μm resolution, 100 kV) of harvested RCUs was done using the GE Explore CT-120 (GE Medical Systems) at an external facility (Cornell University Imaging Facility), in a blinded fashion. Condyle height and bone volume were measured using the Mimics software (Materialise). Quantitation of bone volume and bone volume fraction was conducted by determining the amount of bone in the defect area based on the difference between the CT of pre- and post- surgery and the amount of bone removed.
μCT was performed by using a modified protocol (47 (link)), and the samples were scanned at 21-μm isotropic resolution. The bone volume was obtained from the application of a global thresholding technique so that only the mineralized tissue was detected. There was no difficulty in distinguishing the grafted material from the miniplates and screws used for fixation, which appeared in μCT as compact and geometrically defined structures. Spatial resolution of the full-voxel model was sufficient for evaluating the microarchitecture of the bone tissue.