Annotation data sets in FerrDb belong to three categories (Table 1). Genes were annotated as drivers, suppressors and markers. Small molecules were annotated as inducers and inhibitors. Drivers, suppressors, inducers and inhibitors are regulators of ferroptosis: drivers and inducers positively regulate ferroptosis, while suppressors and inhibitors negatively regulate ferroptosis. Markers do not regulate ferroptosis, but they indicate the occurrence of ferroptosis. Ferroptosis affects the development of disease in two ways. Ferroptosis was then annotated to either aggravate or alleviate an illness. To be annotated as a ferroptosis regulator, genes and small molecules must possess explicit evidence to prove their regulatory role in ferroptosis. This kind of evidence is generally represented by an author statement of the role of the regulator in an original article. Genes that only undergo abundance, modification or stability change or are merely a component of a functional signaling axis or interaction network were annotated as markers. To annotate ferroptosis’ effect on diseases, evidence based on a growth test in cell lines or animal models was required. In comparison with revealing a small molecule’s role, confirming a gene’s function is more challenging. We therefore dedicated more effort to gene annotation. A confidence level was assigned to each annotation to indicate its reliability (Table 2). Experimental reproducibility is correlated with results consistency, so the number of experiments was used as a score of the accuracy of the regulatory role of annotated genes. Critical cases (e.g. article retraction, conflicting results) that may affect the annotation reliability were highlighted by a caution statement. Other noteworthy information (e.g. inconsistent gene symbols) that seems less likely to impair annotation quality was denoted with a remark.
Zhou N, & Bao J. (2020). FerrDb: a manually curated resource for regulators and markers of ferroptosis and ferroptosis-disease associations. Database: The Journal of Biological Databases and Curation, 2020, baaa021.
Genes annotated as drivers, suppressors, and markers
Small molecules annotated as inducers and inhibitors
dependent variables
Regulation of ferroptosis
Effect of ferroptosis on disease development (aggravate or alleviate)
control variables
Explicit evidence to prove the regulatory role of genes and small molecules in ferroptosis
Evidence based on growth tests in cell lines or animal models to annotate ferroptosis' effect on diseases
positive controls
Not explicitly mentioned
negative controls
Not explicitly mentioned
Annotations
Based on most similar protocols
Etiam vel ipsum. Morbi facilisis vestibulum nisl. Praesent cursus laoreet felis. Integer adipiscing pretium orci. Nulla facilisi. Quisque posuere bibendum purus. Nulla quam mauris, cursus eget, convallis ac, molestie non, enim. Aliquam congue. Quisque sagittis nonummy sapien. Proin molestie sem vitae urna. Maecenas lorem.
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to
get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required