To identify a sequence signature that predicts high-performing guides, we evaluated data from TKOv1 screens. From the base 90k TKOv1 library (Hart et al. 2015 (link)), we identified genes in the new CEG2 set that were targeted by six gRNAs each. gRNAs were ranked by log fold-change, and the three gRNAs with the best (most negative) fold-change were identified, as well as the worst (remaining three gRNA). Then, the frequency of each nucleotide at each position in the 20-mer guide sequence was calculated for all best guides targeting all selected genes, and the same was done for the worst guides. The worst frequency was subtracted from the best, resulting in a Δ-frequency table. This process was repeated independently for each replicate at the endpoint for six TKOv1 90k library screens (DLD1, GBM, HAP1, HCT116, RPE1, and RPE1dTP53) for a total of 16 samples. The Δ-frequency tables were summed across the 16 samples and scaled so that the most extreme value (C18) equals one. As TKOv1 explicitly excludes gRNA with T in the last four positions, no score is discovered here; we manually set the score to −1 at these four positions. The final score table is in Table S4. To calculate the sequence score of any candidate gRNA sequence, simply add the nucleotide scores at each position of the gRNA. The score table was evaluated against the 85k supplementary TKOv1 library, which was only applied to HCT116 and HeLa. We calculated the sequence score for all gRNA targeting essential genes, then compared the fold-change distribution of gRNA in the top quartile of scores to the gRNA in the bottom quartile. We repeated this process for the Yusa, Sabatini, and GeCKO v2 libraries.
Hart T., Tong A.H., Chan K., Van Leeuwen J., Seetharaman A., Aregger M., Chandrashekhar M., Hustedt N., Seth S., Noonan A., Habsid A., Sizova O., Nedyalkova L., Climie R., Tworzyanski L., Lawson K., Sartori M.A., Alibeh S., Tieu D., Masud S., Mero P., Weiss A., Brown K.R., Usaj M., Billmann M., Rahman M., Costanzo M., Myers C.L., Andrews B.J., Boone C., Durocher D, & Moffat J. (2017). Evaluation and Design of Genome-Wide CRISPR/SpCas9 Knockout Screens. G3: Genes|Genomes|Genetics, 7(8), 2719-2727.
Publication 2017
Essential genes GeckoGenes Hela Library Nucleotide Replicate
Corresponding Organization : Canadian Institute for Advanced Research
Other organizations :
Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Minnesota
Frequency of each nucleotide at each position in the 20-mer guide sequence for best and worst performing gRNAs
Δ-frequency (difference between best and worst frequencies)
Sequence score of candidate gRNA sequences
control variables
TKOv1 library (explicitly excludes gRNAs with T in the last four positions)
controls
Positive control: Not mentioned
Negative control: Not mentioned
Annotations
Based on most similar protocols
Etiam vel ipsum. Morbi facilisis vestibulum nisl. Praesent cursus laoreet felis. Integer adipiscing pretium orci. Nulla facilisi. Quisque posuere bibendum purus. Nulla quam mauris, cursus eget, convallis ac, molestie non, enim. Aliquam congue. Quisque sagittis nonummy sapien. Proin molestie sem vitae urna. Maecenas lorem.
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to
get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required