To search for possible KED-rich sequences in charophytes, bacteria and animals, KED protein and nucleotide sequences from plants were first repeatedly blasted through each of the intended organism groups in the databases. Then each match was further examined by retrieving its sequence from the database. Translation tool was used to generate open reading frames, followed by amino acid composition analysis, specifically for K+E+D content, to score the putative KED candidates. Once a KED sequence was identified from one taxon group (for example, charophyte), this sequence was used to search the entire available entries from this group. This way, sequences predicting KED-rich open reading frames in genomes of several charophyte, bacterial and animal species were identified.
During the course of searching animal KED candidates, a 6,229-amino acid microtubule-associated protein futsch from honeybee (Apis cerana) was found to contain an internal KED-rich region, whereas its N- and C-terminus portions have normal K, E and D contents. To illustrate examples of the presence of KED sequences in animal species, this 750-amino acid internal KED-rich region was arbitrarily taken out for demonstration in this study.
All retrieved sequences of possible matches were manually reviewed and verified for proper open reading frames and translated sequences. Wherever applicable, both genomic sequences and mRNA sequences were matched to verify the correct coding sequences. The full-length, translated sequences with considerable sequence identity and a high percentage of KED (K+E+D% greater than 30%) were designated as a candidate match.
Only partial KED sequences were available for two plants: cedar (Cryptomeria japonica, a gymnosperm; without C-terminus) and barley (Hordeum vulgare, a monocot, angiosperm; without N-terminus). However, they both still possessed the conserved domain (see “