For the in vitro Ca killing assay, innate immune cells were plated in replicates at a density of 1×105 cells/well of 96-well plates. Cells were incubated with Ca at indicated MOIs and for indicated time. After incubation, mammalian cells were lysed by addition of Triton X 100 to a final concentration of 1%. After lysis, wells were extensively scrapped, 2× washed with PBS and surviving Ca was determined by plating serial dilutions of the collected media and washes in duplicates on YPD plates containing ampicillin (Sigma). The percentage of killing was calculated according to the following formulas (df = dilution factor):
Isolation and Assay of Innate Immune Cells
For the in vitro Ca killing assay, innate immune cells were plated in replicates at a density of 1×105 cells/well of 96-well plates. Cells were incubated with Ca at indicated MOIs and for indicated time. After incubation, mammalian cells were lysed by addition of Triton X 100 to a final concentration of 1%. After lysis, wells were extensively scrapped, 2× washed with PBS and surviving Ca was determined by plating serial dilutions of the collected media and washes in duplicates on YPD plates containing ampicillin (Sigma). The percentage of killing was calculated according to the following formulas (df = dilution factor):
Corresponding Organization :
Other organizations : Max Perutz Labs, Vienna Biocenter, University of Veterinary Medicine Vienna, Medical University of Vienna, Vienna General Hospital, University Hospital Regensburg
Protocol cited in 6 other protocols
Variable analysis
- The concentration of Candida (Ca) used for co-culture with innate immune cells (indicated MOIs)
- Percentage of Ca killing by innate immune cells
- Mice strain (C57BL/6)
- Time of incubation between innate immune cells and Ca
- Lysis of mammalian cells with Triton X-100
- Plating of surviving Ca on YPD plates containing ampicillin
- Positive control: Not explicitly mentioned
- Negative control: Not explicitly mentioned
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!