Ca2+-activated force was measured at maximal level of activation (pCa 4.3). The amount of free [Ca2+] in solution and corresponding pCa value was determined using methods described previously (Fabiato and Fabiato, 1979 (link)). Once steady-state isometric force was achieved, the length of the constantly activated muscle was commanded to change according to the following step length change protocol. A command was given to the motor for the muscle to increase its length by 0.5% of ML in a step-like fashion. This length was maintained for 5 s at which time the muscle was commanded to rapidly return to ML. After another 5 s, a command was given to increase muscle length to 1.0% of ML, which was held for 5 s before rapidly returning to ML. This procedure was repeated for additional step increases in muscle length of 1.5 and 2.0%. All step-like changes in muscle length were essentially completed in 1–2 ms. Measurements of force and muscle length were digitally sampled every 1 ms during the entire procedure. In all cases, force stabilized to a steady-state value within ∼1.5 s after a change in length. The first 1.5 s of the force response to the increase in muscle length was taken as a response to quick stretch, and the first 1.5 s of force response after the return of muscle length to ML was taken as a response to quick release. All force and muscle length records were normalized to their respective values just before length change.
Muscle Force Response to Length Change
Ca2+-activated force was measured at maximal level of activation (pCa 4.3). The amount of free [Ca2+] in solution and corresponding pCa value was determined using methods described previously (Fabiato and Fabiato, 1979 (link)). Once steady-state isometric force was achieved, the length of the constantly activated muscle was commanded to change according to the following step length change protocol. A command was given to the motor for the muscle to increase its length by 0.5% of ML in a step-like fashion. This length was maintained for 5 s at which time the muscle was commanded to rapidly return to ML. After another 5 s, a command was given to increase muscle length to 1.0% of ML, which was held for 5 s before rapidly returning to ML. This procedure was repeated for additional step increases in muscle length of 1.5 and 2.0%. All step-like changes in muscle length were essentially completed in 1–2 ms. Measurements of force and muscle length were digitally sampled every 1 ms during the entire procedure. In all cases, force stabilized to a steady-state value within ∼1.5 s after a change in length. The first 1.5 s of the force response to the increase in muscle length was taken as a response to quick stretch, and the first 1.5 s of force response after the return of muscle length to ML was taken as a response to quick release. All force and muscle length records were normalized to their respective values just before length change.
Partial Protocol Preview
This section provides a glimpse into the protocol.
The remaining content is hidden due to licensing restrictions, but the full text is available at the following link:
Access Free Full Text.
Corresponding Organization : Washington State University
Protocol cited in 20 other protocols
Variable analysis
- Length change of muscle fiber bundles: 0.5%, 1.0%, 1.5%, and 2.0% of baseline muscle length (ML)
- Isometric force generated by the muscle fiber bundles
- Sarcomere length (SL) of the muscle fiber bundles
- Skinned muscle fiber bundles
- Displacement motor to control muscle length
- Force transducer to measure force
- Activating and relaxing solutions to bathe the muscle fiber bundles
- Sarcomere length set to 2.2 μm before Ca2+ activation
- Fiber bundle cross-sectional area calculated from optical measurements
- Maximal level of Ca2+ activation (pCa 4.3)
- No explicit negative controls mentioned
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!