The compounds present in the EO were determined qualitatively and quantitatively using a gas chromatograph (GC) (model 6890N series, Agilent Technologies, Santa Clara, CA, USA) according to the procedures described by Valarezo, et al. (2021) [39 (link)], with minimal modifications to some parameters. In the case of qualitative analyses, the GC was equipped with a mass spectrometer (type quadrupole) detector (MS) (model Agilent series 5973 inert, Agilent Technologies, Santa Clara, CA, USA) and, for quantitative analyses, GC was coupled to a flame ionization detector (FID). In both cases, an automatic injector (Agilent 7683, Agilent Technologies, Santa Clara, CA, USA) in split mode and a nonpolar column DB-5 ms were used. The samples are prepared with a ratio of 1/100 (v/v) of EO/DCM and then injected with a split ratio of 1:50. The temperature ramp was 50 °C for 3 min, then 2.5 °C/min until 210 °C, and 3 min at this temperature. The injector temperature was 210 °C and 250 °C for both detectors. The retention index (IR) was determined based on the comparison of retention times of the EO compounds and of the aliphatic hydrocarbons of standard injection under the same conditions. The compounds were identified based on a comparison of mass spectrum data and IRs with those published in the literature [40 ,41 ].
Free full text: Click here