Primers that successfully amplified a product were tested for polymorphism using sequencing in a series of three pools representing different degrees of diversity. The design has complementary pools representing each class (fresh market, processing, other) with one diverse line from an alternate class to maximize the chance of detecting a polymorphism within or among pools. Using a series of empirical tests with lines with known SNPs in ratios of 1:7, 1:5, 1:3 and 1:1, we determined that an unknown polymorphism can be reliably detected with sequencing with a 1:3 dilution. Pool 1 consisted of O 9242, FL7600, Ha7998, PI114490; Pool 2 included M82, O 8245, O 88119, NC84173 and; Pool 3 consisted of Sun1642, Heinz1706, O 9242, FL7600 (Table
For all sequencing reactions, forward and reverse primers were tailed with M13 sequences and sequenced using standard protocols for Sanger sequencing (Applied Biosystems, Foster City, CA) in forward and reverse directions using a ABI 3730 (Applied Biosystems, Foster City, CA). Trace files were trimmed with Phred options -trim_cutoff 0.02" which translates to Phred 17 score. [29 (link)]. Assembly was achieved with Phrap/Consed and options were set at " -retainduplicates and -forcelevel 5". These options were optimized to give the best trim and assembly parameters for calling SNPs. Stringent trim parameters are favored in this case to minimize the high number of false SNPs associated with poor sequence on the ends. Amplicon sizes were estimated and included in Additional file
SNPs were first identified semi-manually using Polyphred as heterozygotes within pools or homozygous differences among pools. The line, M82, was used as reference to screen amplicons for single copy number. Amplicons with putative SNPs were then amplified in the individual 12 lines (Table